Designing a Correct Numerical Algorithm

Christoph Lauter Guillaume Melquiond

March 27, 2013

Outline

(1) Introduction
(2) Implementation theory
(3) Error analysis

4 Sollya and polynomial approximations
(5) Gappa and error bounds
(6) Supremum norm
(7) Conclusion

Outline

(1) Introduction

- Introduction
- Vocabulary
- Basic concepts

Motivation: Implementing Mathematical Functions

Our work: Designing methods and tools to help with the floating-point implementation of mathematical functions.

Motivation: Implementing Mathematical Functions

Our work: Designing methods and tools to help with the floating-point implementation of mathematical functions.

Features:

- correct rounding (deterministic, portable, suitable for proofs),

Motivation: Implementing Mathematical Functions

Our work: Designing methods and tools to help with the floating-point implementation of mathematical functions.

Features:

- correct rounding (deterministic, portable, suitable for proofs),
- as fast as crude implementations,

Motivation: Implementing Mathematical Functions

Our work: Designing methods and tools to help with the floating-point implementation of mathematical functions.

Features:

- correct rounding (deterministic, portable, suitable for proofs),
- as fast as crude implementations,
- high confidence in the correctness.

Implementing a Mathematical Function

Peculiarities of such implementations:

- One needs to bound the maximum error (and not the average error, as is done for signal processing).

Implementing a Mathematical Function

Peculiarities of such implementations:

- One needs to bound the maximum error (and not the average error, as is done for signal processing).
- Functions are straight-line codes, so as to avoid costly control flow.

Implementing a Mathematical Function

Peculiarities of such implementations:

- One needs to bound the maximum error (and not the average error, as is done for signal processing).
- Functions are straight-line codes, so as to avoid costly control flow.
- Accuracy and precision are fixed (no multi-precision algorithms à la MPFR).

Implementing a Mathematical Function

Peculiarities of such implementations:

- One needs to bound the maximum error (and not the average error, as is done for signal processing).
- Functions are straight-line codes, so as to avoid costly control flow.
- Accuracy and precision are fixed (no multi-precision algorithms à la MPFR).
- Algorithm and proof are devised at the same time.

Tools: Sollya and Gappa

Environment for high-confidence code developments

Tools: Sollya and Gappa

Environment for high-confidence code developments:

- Sollya: the mathematical side of the process.

Tools: Sollya and Gappa

Environment for high-confidence code developments:

- Sollya: the mathematical side of the process.
- Finding approximation polynomials.

Tools: Sollya and Gappa

Environment for high-confidence code developments:

- Sollya: the mathematical side of the process.
- Finding approximation polynomials.
- Bounding truncation and quantization errors.

Tools: Sollya and Gappa

Environment for high-confidence code developments:

- Sollya: the mathematical side of the process.
- Finding approximation polynomials.
- Bounding truncation and quantization errors.
- Gappa: the floating-point side of the process.

Tools: Sollya and Gappa

Environment for high-confidence code developments:

- Sollya: the mathematical side of the process.
- Finding approximation polynomials.
- Bounding truncation and quantization errors.
- Gappa: the floating-point side of the process.
- Bounding round-off and global errors.

Running Example

Example (Exponential)

A floating-point implementation of the exponential function with a relative accuracy of 2^{-42} (but no correct rounding).

Running Example

Example (Exponential)

A floating-point implementation of the exponential function with a relative accuracy of 2^{-42} (but no correct rounding).

Constraints:

- a C function working on binary64 numbers,
- for any finite input x and any finite output y,

$$
\left|\frac{y}{\exp x}-1\right| \leq 2^{-42}
$$

- efficiency!

Vocabulary

Definition (Precision and accuracy)

- Precision: number format used for input, output, and computations.
- Accuracy: quality of the results.

Vocabulary

Definition (Validation and verification)
How to ensure that a program/device is fit for a purpose?

- Validation: black box, experimental process.
- Verification: abstraction, mathematical process.

Vocabulary

Definition (Validation and verification)

How to ensure that a program/device is fit for a purpose?

- Validation: black box, experimental process.
- Verification: abstraction, mathematical process.

Definition (Certification and qualification)

- Certification: assessing software safety according to regulations.
- Qualification: making tools suitable for use during certification.

Basic Concepts: Floating-Point Arithmetic

Every operation shall be performed as if it first produced an intermediate result correct to infinite precision and with unbounded range, and then rounded that result.

- IEEE-754 standard for FP arithmetic

Basic Concepts: Floating-Point Arithmetic

Every operation shall be performed as if it first produced an intermediate result correct to infinite precision and with unbounded range, and then rounded that result.

- IEEE-754 standard for FP arithmetic
- Concise specification, suitable for program verification.

Basic Concepts: Floating-Point Arithmetic

Every operation shall be performed as if it first produced an intermediate result correct to infinite precision and with unbounded range, and then rounded that result.

- IEEE-754 standard for FP arithmetic
- Concise specification, suitable for program verification.
- It is all about real numbers:
$\circ(x)$ is the real value of the floating-point number the closest to the real number x, given a format and a rounding mode.

Basic Concepts: Interval Arithmetic

Interval evaluations can serve as proofs of bounds, when they satisfy the containment property:

$$
x \in I_{x} \wedge y \in I_{y} \quad \Longrightarrow \quad x \diamond y \in I_{z} \quad \text { if } I_{x} \diamond I_{y} \subseteq I_{z}
$$

for $\diamond \in\{+,-, \times, \div\}$. Also for unary functions: $\sqrt{\cdot}$, sin, and so on.

Basic Concepts: Interval Arithmetic

Interval evaluations can serve as proofs of bounds, when they satisfy the containment property:

$$
x \in I_{x} \wedge y \in I_{y} \quad \Longrightarrow \quad x \diamond y \in I_{z} \quad \text { if } I_{x} \diamond I_{y} \subseteq I_{z}
$$

for $\diamond \in\{+,-, \times, \div\}$. Also for unary functions: $\sqrt{ }$, sin, and so on.
Arithmetic operations on intervals:

- $[a, b]+[c, d]=[a+c, b+d]$,
- $[a, b]-[c, d]=[a-d, b-c]$,
- $[a, b] \times[c, d]=[\min (a c, a d, b c, b d), \max (a c, a d, b c, b d)]$,
- $[a, b] \div[c, d]=[a, b] \times[c, d]^{-1}$
with $[c, d]^{-1}=[1 / d, 1 / c]$ if $0 \notin[c, d]$.

Outline

(2) Implementation theory

- Functions on computers
- Ingredients for an implementation
- Implementation schemes

Elementary functions implemented on Computers

Elementary functions implemented on Computers

Elementary functions implemented on Computers

Disclaimer for this section

- No multi-precision algorithms
- The input/output precisions are supposed to be known
- E.g. exp gets implemented on binary64 with 53 bits
- Implementation of exp with k bits of output precision is harder.
- Refer to the MPFR library for that.
- No techniques especially developed for hardware
- The different libms are implemented in software
- Some processors do integrated specialized hardware
- but it is less and less used for common libm usecases.
- If it is used, it is on Intel/AMD, where it is microcode, i.e. software.
- There are some specialized techniques for hardware, such as CORDIC.

Polynomial approximation

- How to implement $f=\exp$. .
- \ldots on a small domain $I=[-1 ; 1]$, to start with?

Polynomial approximation

- How to implement $f=\exp$. .
- ... on a small domain $I=[-1 ; 1]$, to start with?

- Solution: replace f by an approximation polynomial p

Polynomial approximation

- How to implement $f=\exp$. .
- ... on a small domain $I=[-1 ; 1]$, to start with?

- Solution: replace f by an approximation polynomial p
- Classes of polynomials:
- Weierstraß tells us that the techniques always work
- Taylor expansion as a first idea
- Polynomials that minimize the maximum error on the domain.

Why polynomials?

- Why polynomials and no other approximants?
- Why no (truncated) continued fractions?
- Why no approximations with other base functions?

Why polynomials?

- Why polynomials and no other approximants?
- Why no (truncated) continued fractions?
- Why no approximations with other base functions?
- A (almost) purely technological answer
- Fast hardware support for,$+ \times$ and FMA
- Less performance for division (19 cycles on i5/i7)
- The ability to explicitly compute the error for + and $\times \ldots$.
... but not for sin and log

Why polynomials?

- Why polynomials and no other approximants?
- Why no (truncated) continued fractions?
- Why no approximations with other base functions?
- A (almost) purely technological answer
- Fast hardware support for,$+ \times$ and FMA
- Less performance for division (19 cycles on i5/i7)
- The ability to explicitly compute the error for + and $\times \ldots$. ... but not for sin and log
- This answer is not categorical.
- Some functions are hard to approximate with polynomials: asin
- We are doing software; things might be different in hardware.
- There is a rich tool-chain for polynomials and almost nothing for the rest.

Reasons why argument reduction is needed

- Functions f need to be implemented on the whole FP domain
- For binary64, $f=\exp$ is defined on $I=[-744.5 ; 709]$

Reasons why argument reduction is needed

- Functions f need to be implemented on the whole FP domain
- For binary64, $f=\exp$ is defined on $I=[-744.5 ; 709]$
- Polynomial approximation alone is not enough:

Reasons why argument reduction is needed

- Functions f need to be implemented on the whole FP domain
- For binary64, $f=\exp$ is defined on $I=[-744.5 ; 709]$
- Polynomial approximation alone is not enough:

- When the domain is large, the error explodes for a given degree
- or: a huge degree is needed to compensate.

Argument reduction

- Argument reduction reduces the range of the function
- Use of algebraic properties of the function
- Periodicity: sin
- Autosimilarity: exp
- Symmetry: asin
- Use of the semi-logarithmic character of the FP formats
- From space, convertTolnteger and exp are kind of alike.
- Fallback: splitting of the domain into subdomains.

Argument reduction

- Argument reduction reduces the range of the function
- Use of algebraic properties of the function
- Periodicity: sin
- Autosimilarity: exp
- Symmetry: asin
- Use of the semi-logarithmic character of the FP formats
- From space, convertTolnteger and exp are kind of alike.
- Fallback: splitting of the domain into subdomains.
- Example for exp:

$$
e^{x}=2^{\frac{x}{\log 2}}=2^{\left\lfloor\frac{x}{\lfloor\log 2}\right\rceil} \cdot 2^{\frac{x}{\log 2}-\left\lfloor\frac{x}{\log 2}\right\rceil}=2^{E} \cdot e^{x-E \log 2}=2^{E} \cdot e^{r}
$$

Tabulation

- Periodicity and the semi-logarithmic FP are not enough
- Periodicity: a whole period is to be covered by the polynomial
- Semi-logarithmic character: a whole binade $1 \leq m<2$

Tabulation

- Periodicity and the semi-logarithmic FP are not enough
- Periodicity: a whole period is to be covered by the polynomial
- Semi-logarithmic character: a whole binade $1 \leq m<2$
- Idea: use a table
- precompute the function at discrete points in a table
- and have the polynomial cover the gaps between these points.

Tabulation

- Periodicity and the semi-logarithmic FP are not enough
- Periodicity: a whole period is to be covered by the polynomial
- Semi-logarithmic character: a whole binade $1 \leq m<2$
- Idea: use a table
- precompute the function at discrete points in a table
- and have the polynomial cover the gaps between these points.
- Issue: function needs to be autosimilar so that it stays the same between all discrete points.

Tabulation - Example

Example for exp:

$$
\begin{aligned}
e^{x} & =2^{\frac{x}{\log 2}} \\
& =2^{2^{-\lambda}}\left[2^{\lambda} \frac{x}{\log 2}\right\rceil \cdot 2^{\frac{x}{\log 2}-2^{-\lambda}}\left\lfloor 2^{\lambda} \frac{x}{\log 2}\right\rceil \\
& =2^{E} \cdot 2^{2^{-\lambda}} i \cdot e^{x-k 2^{-\lambda} \log 2} \\
& =2^{E} \cdot 2^{2^{-\lambda}} i \cdot e^{r}
\end{aligned}
$$

where

$$
k=\left\lfloor 2^{\lambda} \frac{x}{\log 2}\right\rceil, E=\left\lfloor 2^{-\lambda} k\right\rfloor, i=k-2^{\lambda} E, r=x-k 2^{-\lambda} \log 2
$$

Tabulation - Example

Example for exp:

$$
\begin{aligned}
e^{x} & =2^{\frac{x}{\log 2}} \\
& =2^{2^{-\lambda}}\left\lfloor 2^{\lambda} \frac{x}{\log 2}\right\rceil \cdot 2^{\frac{x}{\log 2}-2^{-\lambda}}\left\lfloor 2^{\lambda} \frac{x}{\log 2}\right\rceil \\
& =2^{E} \cdot 2^{2^{-\lambda}} i \cdot e^{x-k 2^{-\lambda} \log 2} \\
& =2^{E} \cdot 2^{2^{-\lambda}} i \cdot e^{r}
\end{aligned}
$$

where

$$
k=\left\lfloor 2^{\lambda} \frac{x}{\log 2}\right\rceil, E=\left\lfloor 2^{-\lambda} k\right\rfloor, i=k-2^{\lambda} E, r=x-k 2^{-\lambda} \log 2
$$

Here,

- $t: i \mapsto 2^{2^{-\lambda} i}$ is $t: \mathbb{N} \rightarrow \mathbb{R}$, hence a table,
- where the index i is bounded by $0 \leq i \leq 2^{\lambda}-1$ and
- r, the reduced argument, is in a small domain $|r| \leq \frac{1}{2} 2^{-\lambda} \frac{1}{\log 2}$.

Reconstruction

- Argument reduction "cuts" f into several other functions
- the function on the reduced domain
- the functions $i \mapsto t[i]$ computed by the tables
- the basic operations used in the reduction itself.

Reconstruction

- Argument reduction "cuts" f into several other functions
- the function on the reduced domain
- the functions $i \mapsto t[i]$ computed by the tables
- the basic operations used in the reduction itself.
- The reconstruction phase recovers the original function f.
- Reconstruction code is often easier to write than argument reduction code.
- Bit-fiddling for argument reduction
- Pure basic FP operations (adds and muls) for reconstruction.
- However, reconstruction does yield to some error due to roundings.

Algorithm scheme for a function's implementation

A toy exponential

```
// A very crude "toy" implementation of exp(x)
//
// About 42 bits of accuracy. No checks for NaN, Inf whatsoever.
//
double Exp(double x) {
    double z, n, t, r, P, tbl, y;
    uint32_t E, idx, N;
    doubleCaster shiftedN, twoE;
    // Argument reduction
    z = x * TWO_4_RCP_LN_2; // z = x * 2^4 * 1/ln(2)
    shiftedN.d = z + TWO_52_P_51; // shiftedN.d = nearestint(z) + 2^52 + 2^51
    n = shiftedN.d - TWO_52_P_51; // n = nearestint(z) as double
    N = shiftedN.i[LO]; // N = nearestint(z) as integer
    E = N >> 4;
    // E = floor(2^-4 *N)
    idx = N & 0x0f; // idx = N - E* 2^4
    t = n * TWO_M_4_LN_2; // t = n * 2^-4 * ln(2)
    r = x - t;
    r=x-t
    // Polynomial approximation p(r) approximates exp(r)
    P = c0 + r * (c1 + r* (c2 + r * (c3 + r * (c4 + r * c5))));
```

 // Table access
 \(\mathrm{tb\mid}=\mathrm{table}[\mathrm{idx}] ; \quad / / t b \mid=2^{\wedge}\left(2^{\wedge}-4 * i d x\right)\)
 // Reconstruction
 twoE.i[HI] \(=(E+1023) \ll 20\);
 twoE.i[LO] \(=0 ; \quad / / t w o E . d=2^{\wedge} E\)
 \(y=t w o E . d *(t b l * P) ; \quad / / y=2^{\wedge} E * t b \mid * P\)
 return y;
 \}

Exceptional cases

- The function $f: \mathbb{R} \rightarrow \mathbb{R}$ to implement lives in a FP format

Exceptional cases

- The function $f: \mathbb{R} \rightarrow \mathbb{R}$ to implement lives in a FP format
- Floating-point formats have special values:
- Infinities $\pm \infty$
- Not-A-Numbers (NaNs), possibly with "payload"
- Zeros ± 0, with some semantics behind the sign
- Subnormal numbers

Exceptional cases

- The function $f: \mathbb{R} \rightarrow \mathbb{R}$ to implement lives in a FP format
- Floating-point formats have special values:
- Infinities $\pm \infty$
- Not-A-Numbers (NaNs), possibly with "payload"
- Zeros ± 0, with some semantics behind the sign
- Subnormal numbers
- An implementation of f must handle these special values
- in input, branching out before argument reduction
- NaNs give NaNs with the same payload,
- Infinities are handled with some limits semantics,
- Subnormals must be renormalized as appropriate.
- in output
- Underflows and overflows where appropriate,
- Domain errors yield NaNs.

Outline

(3) Error analysis

- Error kinds and propagation
- Approximation
- Evaluation
- Argument reduction, result reconstruction

Error Kinds and Propagation

Definition (Absolute and relative errors)

Let \tilde{x} be a computed value and x an expected value.

- Absolute error: $\delta_{x}=\tilde{x}-x$.
- Relative error: $\varepsilon_{x}=(\tilde{x}-x) / x$.
(Gappa's definitions)

Error Kinds and Propagation

Definition (Absolute and relative errors)

Let \tilde{x} be a computed value and x an expected value.

- Absolute error: $\delta_{x}=\tilde{x}-x$.
- Relative error: $\varepsilon_{x}=(\tilde{x}-x) / x$.
(Gappa's definitions)
- Relative error rules over floating-point arithmetic.

Error Kinds and Propagation

Definition (Absolute and relative errors)

Let \tilde{x} be a computed value and x an expected value.

- Absolute error: $\delta_{x}=\tilde{x}-x$.
- Relative error: $\varepsilon_{x}=(\tilde{x}-x) / x$.
(Gappa's definitions)
- Relative error rules over floating-point arithmetic.
- It needs careful analysis in presence of addition:

$$
\frac{(\tilde{x}+\tilde{y})-(x+y)}{x+y}=\frac{\delta_{x}+\delta_{y}}{x+y} \quad \text { when } x+y \rightarrow 0 .
$$

Error Kinds

Definition

- Model error: distance between the physical phenomenon and its mathematical model.

Error Kinds

Definition

- Model error: distance between the physical phenomenon and its mathematical model.
- Input error: inaccuracy of sensors.

Error Kinds

Definition

- Model error: distance between the physical phenomenon and its mathematical model.
- Input error: inaccuracy of sensors.
- Truncation error: due to ignoring terms in formulas.

Error Kinds

Definition

- Model error: distance between the physical phenomenon and its mathematical model.
- Input error: inaccuracy of sensors.
- Truncation error: due to ignoring terms in formulas.
- Quantization error: representation of mathematical constants as floating-point numbers.

Error Kinds

Definition

- Model error: distance between the physical phenomenon and its mathematical model.
- Input error: inaccuracy of sensors.
- Truncation error: due to ignoring terms in formulas.
- Quantization error: representation of mathematical constants as floating-point numbers.
- Round-off error: caused by finite-precision computations.

Error Kinds

Definition

- Model error: distance between the physical phenomenon and its mathematical model.
- Input error: inaccuracy of sensors.
- Truncation error: due to ignoring terms in formulas.
- Quantization error: representation of mathematical constants as floating-point numbers.
- Round-off error: caused by finite-precision computations.

Arbitrary classification.
Better look at them from a tool perspective.

Error Kinds

\longrightarrow floating-point values
\longrightarrow approximation errors (Sollya)
\longrightarrow round-off errors and propagation (Gappa)

Polynomial Approximation

Example (Truncation error for exponential)
Input domain: $|r| \leq 195103586506733 \cdot 2^{-53} \simeq 2^{-5.5}$.
Expected result: e^{r}.
Algorithm with infinitely-precise computations: $\hat{P}(r)=\sum_{i \leq 5} c_{i} r^{i}$.
Goal: bound $\hat{P}(r) / e^{r}-1$.

Polynomial Approximation

Example (Truncation error for exponential)

Input domain: $|r| \leq 195103586506733 \cdot 2^{-53} \simeq 2^{-5.5}$.
Expected result: e^{r}.
Algorithm with infinitely-precise computations: $\hat{P}(r)=\sum_{i \leq 5} c_{i} r^{i}$.
Goal: bound $\hat{P}(r) / e^{r}-1$.

Specificities:

- $r \mapsto \hat{P}(r) / e^{r}$ is a C^{∞} function.

All the methods from real analysis are available.

Polynomial Approximation

Example (Truncation error for exponential)

Input domain: $|r| \leq 195103586506733 \cdot 2^{-53} \simeq 2^{-5.5}$.
Expected result: e^{r}.
Algorithm with infinitely-precise computations: $\hat{P}(r)=\sum_{i \leq 5} c_{i} r^{i}$.
Goal: bound $\hat{P}(r) / e^{r}-1$.

Specificities:

- $r \mapsto \hat{P}(r) / e^{r}$ is a C^{∞} function.

All the methods from real analysis are available.

- $\hat{P}(r)$ and e^{r} are close (by design), so be wary of tool results.

Polynomial Approximation

Example (Truncation error for exponential)

Input domain: $|r| \leq 195103586506733 \cdot 2^{-53} \simeq 2^{-5.5}$.
Expected result: e^{r}.
Algorithm with infinitely-precise computations: $\hat{P}(r)=\sum_{i \leq 5} c_{i} r^{i}$.
Goal: bound $\hat{P}(r) / e^{r}-1$.

Specificities:

- $r \mapsto \hat{P}(r) / e^{r}$ is a C^{∞} function.

All the methods from real analysis are available.

- $\hat{P}(r)$ and e^{r} are close (by design), so be wary of tool results.
- Dedicated tool: Sollya.

Relative Truncation Error

Polynomial Evaluation

Example (Round-off error for exponential)

 Input domain: $|r| \leq 195103586506733 \cdot 2^{-53} \simeq 2^{-5.5}$. Algorithm with infinitely-precise computations: $\hat{P}(r)=\sum_{i \leq 5} c_{i} r^{i}$. Computed value: $P(r)=\circ\left(c_{0}+\circ\left(r \times \circ\left(c_{1}+\ldots\right)\right)\right)$. Goal: bound $P(r) / P(r)-1$.
Polynomial Evaluation

Example (Round-off error for exponential)

 Input domain: $|r| \leq 195103586506733 \cdot 2^{-53} \simeq 2^{-5.5}$. Algorithm with infinitely-precise computations: $\hat{P}(r)=\sum_{i \leq 5} c_{i} r^{i}$.Computed value: $P(r)=\circ\left(c_{0}+\circ\left(r \times \circ\left(c_{1}+\ldots\right)\right)\right)$. Goal: bound $P(r) / P(r)-1$.

Specificities:

- $r \mapsto P(r) / \hat{P}(r)$ is not even continuous.

Polynomial Evaluation

Example (Round-off error for exponential)

 Input domain: $|r| \leq 195103586506733 \cdot 2^{-53} \simeq 2^{-5.5}$. Algorithm with infinitely-precise computations: $\hat{P}(r)=\sum_{i \leq 5} c_{i} r^{i}$. Computed value: $P(r)=\circ\left(c_{0}+\circ\left(r \times \circ\left(c_{1}+\ldots\right)\right)\right)$. Goal: bound $P(r) / P(r)-1$.Specificities:

- $r \mapsto P(r) / \hat{P}(r)$ is not even continuous.
- Dedicated tool: Gappa.

Polynomial Evaluation

Example (Round-off Global error for exponential)

Input domain: $|r| \leq 195103586506733 \cdot 2^{-53} \simeq 2^{-5.5}$.
Algorithm with infinitely-precise computations: $\hat{P}(r)=\sum_{i \leq 5} c_{i} r^{i}$.
Computed value: $P(r)=\circ\left(c_{0}+\circ\left(r \times \circ\left(c_{1}+\ldots\right)\right)\right)$. Goal: bound $P(r) / \hat{P}(r)-1$. Input error: $|r-\hat{r}| \leq 184646756448821703 \cdot 2^{-100} \simeq 2^{-42.6}$. Truncation error: $\left|\hat{P}(r) / e^{r}-1\right| \leq 30567 \ldots 0435 \cdot 2^{-129} \simeq 2^{-47.6}$. Goal: bound $P(r) / e^{r}-1$.

Specificities:

- $r \mapsto P(r) / \hat{P}(r)$ is not even continuous.
- Dedicated tool: Gappa.
- Note: the truncation error comes from Sollya.

Relative Round-Off Error

Christoph Lauter, Guillaume Melquiond
Designing a Correct Numerical Algorithm

Relative Round-Off and Truncation Error

Argument Reduction

Where does the bound $|r-\hat{r}| \leq 2^{-42.6}$ come from?

Argument Reduction

Where does the bound $|r-\hat{r}| \leq 2^{-42.6}$ come from?
Example (Input error for polynomial evaluation of exponential) Input domain: $|x| \leq 800$.
Reduction factor: $n=\lfloor 0(x \cdot$ TWO_4_RCP LN_2 $)\rceil$.
Computed value: $r=\circ(x-\circ(n \times$ TWO_M_4 LLN_2 $)$).
Expected value: $\hat{r}=x-n \times \ln (2) / 16$.
Goal: bound $r-\hat{r}$.

Argument Reduction

Where does the bound $|r-\hat{r}| \leq 2^{-42.6}$ come from?
Example (Input error for polynomial evaluation of exponential) Input domain: $|x| \leq 800$.
Reduction factor: $n=\lfloor 0(x \cdot$ TWO_4_RCP LN_2 $)\rceil$.
Computed value: $r=\circ(x-\circ(n \times$ TWO_M_4_LN_2 $)$).
Expected value: $\hat{r}=x-n \times \ln (2) / 16$.
Goal: bound $r-\hat{r}$.

Specificities:

- $r-\hat{r}$ is not continuous with respect to x; the last round-off error vanishes.

Argument Reduction

Where does the bound $|r-\hat{r}| \leq 2^{-42.6}$ come from?
Example (Input error for polynomial evaluation of exponential)
Input domain: $|x| \leq 800$.
Reduction factor: $n=\lfloor 0(x \cdot$ TWO_4_RCP LN_2 $)\rceil$.
Computed value: $r=\circ(x-\circ(n \times$ TWO_M_4_LN_2 $)$).
Expected value: $\hat{r}=x-n \times \ln (2) / 16$.
Goal: bound $r-\hat{r}$.

Specificities:

- $r-\hat{r}$ is not continuous with respect to x; the last round-off error vanishes.
- Dedicated tool: Gappa.

Argument Reduction

Where does the bound $|r-\hat{r}| \leq 2^{-42.6}$ come from?

Example (Input error for polynomial evaluation of exponential)

Input domain: $|x| \leq 800$.
Reduction factor: $n=\lfloor 0(x \cdot$ TWO_4_RCP LN_2 $)\rceil$.
Computed value: $r=\circ(x-\circ(n \times$ TWO_M_4_LN_2 $)$).
Expected value: $\hat{r}=x-n \times \ln (2) / 16$.
Goal: bound $r-\hat{r}$.

Specificities:

- $r-\hat{r}$ is not continuous with respect to x; the last round-off error vanishes.
- Dedicated tool: Gappa.
- Note: the quantization error comes from Sollya.

Result Reconstruction

Example (Final error for exponential)

Computed value: $y=\circ\left(2^{E} \times \circ(t b l \times P(r))\right)$.
Expected value: $\hat{y}=e^{x}=2^{E} \times\left(2^{i d x / 16} \times e^{\hat{r}}\right)$.
Goal: bound $y / \hat{y}-1$.

- Dedicated tool: Gappa.

Result Reconstruction

Example (Final error for exponential)

Computed value: $y=\circ\left(2^{E} \times \circ(t b l \times P(r))\right)$.
Expected value: $\hat{y}=e^{x}=2^{E} \times\left(2^{i d x / 16} \times e^{\hat{r}}\right)$.
Goal: bound $y / \hat{y}-1$.

- Dedicated tool: Gappa.
- Note: the quantization error on $2^{i d x / 16}$ comes from Sollya.

Result Reconstruction

Example (Final error for exponential)

Computed value: $y=\circ\left(2^{E} \times \circ(t b l \times P(r))\right)$.
Expected value: $\hat{y}=e^{x}=2^{E} \times\left(2^{i d x / 16} \times e^{\hat{r}}\right)$.
Goal: bound $y / \hat{y}-1$.

- Dedicated tool: Gappa.
- Note: the quantization error on $2^{i d x / 16}$ comes from Sollya.
- Disclaimer: we have ignored the case where multiplying by 2^{E} causes an underflow.

Relative Global Error

Christoph Lauter, Guillaume Melquiond
Designing a Correct Numerical Algorithm

Outline

4 Sollya and polynomial approximations

- Polynomial approximation theory
- First ideas for polynomial approximation
- Interpolation polynomials
- Choosing the right interpolation points
- Remez polynomials
- Polynomial approximation with Sollya

Specifying polynomial approximation

- Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a function...
- ... on a small domain $I=[a ; b] \subset \mathbb{R}$.
- Also fix a target error $\bar{\varepsilon}$ to be satisfied.

Specifying polynomial approximation

- Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a function...
- ... on a small domain $I=[a ; b] \subset \mathbb{R}$.
- Also fix a target error $\bar{\varepsilon}$ to be satisfied.
- We need to compute a polynomial p of minimal degree n such that the error $\frac{p}{f}-1$ stays bounded by $\bar{\varepsilon}$ (in magnitude).

Specifying polynomial approximation

- Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a function...
- ... on a small domain $I=[a ; b] \subset \mathbb{R}$.
- Also fix a target error $\bar{\varepsilon}$ to be satisfied.
- We need to compute a polynomial p of minimal degree n such that the error $\frac{p}{f}-1$ stays bounded by $\bar{\varepsilon}$ (in magnitude).

Example:

- Function: $f=\exp$
- Domain: $I=\left[-\frac{1}{2} ; \frac{1}{2}\right]$
- Target error: $\bar{\varepsilon}=2^{-5}$ (5 correct bits)

Specifying polynomial approximation

- Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a function...
- ... on a small domain $I=[a ; b] \subset \mathbb{R}$.
- Also fix a target error $\bar{\varepsilon}$ to be satisfied.
- We need to compute a polynomial p of minimal degree n such that the error $\frac{p}{f}-1$ stays bounded by $\bar{\varepsilon}$ (in magnitude).

Example:

- Function: $f=\exp$
- Domain: $I=\left[-\frac{1}{2} ; \frac{1}{2}\right]$
- Target error: $\bar{\varepsilon}=2^{-5}$ (5 correct bits)
- $p(x)=1+x+\frac{1}{2} x^{2} \quad n=2$
- $\left\|\frac{p}{f}-1\right\|_{\infty}^{\prime} \approx 3.05 \cdot 10^{-2}<2^{-5}$

Specifying polynomial approximation - cont'd

- Put differently, we need to
- choose a degree n that seems to be sufficient, to
- compute the coefficients c_{i} of a polynomial

$$
p(x)=\sum_{i=0}^{n} c_{i} x^{i}
$$

- to consider the error $\frac{p}{f}-1$ yielded by p
- and to start over, increasing n, if it is too large.

Specifying polynomial approximation - cont'd

- Put differently, we need to
- choose a degree n that seems to be sufficient, to
- compute the coefficients c_{i} of a polynomial

$$
p(x)=\sum_{i=0}^{n} c_{i} x^{i}
$$

- to consider the error $\frac{p}{f}-1$ yielded by p
- and to start over, increasing n, if it is too large.

But how to compute the coefficients c_{i} of the polynomial p ?

Taylor polynomials

- First idea:
- Let us take $x_{0} \in I$
- $f\left(x_{0}\right)$ approximates $f(x)$ over I
- $f\left(x_{0}\right)+\left(x-x_{0}\right) \cdot f^{\prime}\left(x_{0}\right)$ is better
- $f\left(x_{0}\right)+\left(x-x_{0}\right) \cdot f^{\prime}\left(x_{0}\right)+\frac{1}{2} \cdot\left(x-x_{0}\right)^{2} \cdot f^{\prime \prime}\left(x_{0}\right)$ works even better

Taylor polynomials

- First idea:
- Let us take $x_{0} \in I$
- $f\left(x_{0}\right)$ approximates $f(x)$ over $/$
- $f\left(x_{0}\right)+\left(x-x_{0}\right) \cdot f^{\prime}\left(x_{0}\right)$ is better
- $f\left(x_{0}\right)+\left(x-x_{0}\right) \cdot f^{\prime}\left(x_{0}\right)+\frac{1}{2} \cdot\left(x-x_{0}\right)^{2} \cdot f^{\prime \prime}\left(x_{0}\right)$ works even better

- This is the idea behind a Taylor expansion at x_{0} :

$$
f(x)=\underbrace{\sum_{i=0}^{n} \frac{f^{(i)}\left(x_{0}\right)}{i!} \cdot\left(x-x_{0}\right)^{i}}_{=: p(x)}+\underbrace{\frac{f^{(n+1)}(\xi)}{(n+1)!} \cdot\left(x-x_{0}\right)^{n+1}}_{\text {Lagrange rest resp. error }}
$$

Taylor polynomials

- First idea:
- Let us take $x_{0} \in I$
- $f\left(x_{0}\right)$ approximates $f(x)$ over $/$
- $f\left(x_{0}\right)+\left(x-x_{0}\right) \cdot f^{\prime}\left(x_{0}\right)$ is better
- $f\left(x_{0}\right)+\left(x-x_{0}\right) \cdot f^{\prime}\left(x_{0}\right)+\frac{1}{2} \cdot\left(x-x_{0}\right)^{2} \cdot f^{\prime \prime}\left(x_{0}\right)$ works even better

- This is the idea behind a Taylor expansion at x_{0} :

$$
f(x)=\underbrace{\sum_{i=0}^{n} \frac{f^{(i)}\left(x_{0}\right)}{i!} \cdot\left(x-x_{0}\right)^{i}}_{=: p(x)}+\underbrace{\frac{f^{(n+1)}(\xi)}{(n+1)!} \cdot\left(x-x_{0}\right)^{n+1}}_{\text {Lagrange rest resp. error }}
$$

- The differential equations defining our functions are simple:
- Taylor expansions are known for the functions in a libm

Issues with Taylor polynomials

Error of a Taylor polynomial p of degree 5 with respect to $f=\exp$:

Issues with Taylor polynomials

Error of a Taylor polynomial p of degree 5 with respect to $f=\exp$:

- The Taylor polynomial approximates the function best at the expansion point x_{0} : the error vanishes at x_{0}
- The error explodes at the extremities of I
- $\Rightarrow p$ should approximate f well over the whole domain I, or, at least, the error should vanish several times on I

Interpolation polynomials

- A polynomial of degree n
- has $n+1$ coefficients
- i.e. $n+1$ degrees of freedom
- It is defined by $n+1$ points $\left(x_{j}, p\left(x_{j}\right)\right)$

Interpolation polynomials

- A polynomial of degree n
- has $n+1$ coefficients
- i.e. $n+1$ degrees of freedom
- It is defined by $n+1$ points $\left(x_{j}, p\left(x_{j}\right)\right)$
- For the error $p(x)-f(x)$ to vanish at x_{j}, it suffices to have $p\left(x_{j}\right)=f\left(x_{j}\right)$.
- The polynomial p interpolates the function f at x_{j}

Interpolation polynomials

- A polynomial of degree n
- has $n+1$ coefficients
- i.e. $n+1$ degrees of freedom
- It is defined by $n+1$ points $\left(x_{j}, p\left(x_{j}\right)\right)$
- For the error $p(x)-f(x)$ to vanish at x_{j}, it suffices to have $p\left(x_{j}\right)=f\left(x_{j}\right)$.
- The polynomial p interpolates the function f at x_{j}
- A interpolation polynomial for f is defined by $n+1$ values x_{j}
- There is one value per degree of freedom.
- The ordinates $f\left(x_{j}\right)$ are trivial for f and x_{j}.

Example of an interpolation polynomial

Error of p, interpolation polynomial of $f=\exp$:

Example of an interpolation polynomial

Error of p, interpolation polynomial of $f=\exp$:

- The error vanishes at the interpolation points x_{j}
- By choosing the interpolation points, we can constrain the error to oscillate

Computing an interpolation polynomial

How can an interpolation polynomial be computed?

- We have $p\left(x_{j}\right)=\sum_{i=0}^{n} c_{i} x_{j}^{i}=f\left(x_{j}\right)$ for $n+1$ points x_{j}

Computing an interpolation polynomial

How can an interpolation polynomial be computed?

- We have $p\left(x_{j}\right)=\sum_{i=0}^{n} c_{i} x_{j}^{i}=f\left(x_{j}\right)$ for $n+1$ points x_{j}
- Put differently, we have

Computing an interpolation polynomial

How can an interpolation polynomial be computed?

- We have $p\left(x_{j}\right)=\sum_{i=0}^{n} c_{i} x_{j}^{i}=f\left(x_{j}\right)$ for $n+1$ points x_{j}
- Put differently, we have

$$
\underbrace{\left(\begin{array}{cccccc}
1 & x_{1} & x_{1}^{2} & \cdots & \cdots & x_{1}^{n} \\
1 & x_{2} & \ddots & & & \vdots \\
\vdots & \vdots & & x_{j}^{i} & & \vdots \\
\vdots & \vdots & & & \ddots & \vdots \\
1 & x_{n+1} & \cdots & \cdots & \cdots & x_{n+1}^{n}
\end{array}\right)}_{=: A} \cdot \underbrace{\left(\begin{array}{c}
c_{0} \\
c_{1} \\
\vdots \\
c_{n}
\end{array}\right)}_{=: \vec{p}}=\underbrace{\left(\begin{array}{c}
f\left(x_{1}\right) \\
f\left(x_{2}\right) \\
\vdots \\
f\left(x_{n+1}\right)
\end{array}\right)}_{=: \vec{f}}
$$

- We know that Vandermonde matrix A and the r.h.s. \vec{f}.
- \Rightarrow solving that systems yields p
- Side note: special resolution algorithms for Vandermonde

A chicken and egg problem

- We know that right-hand side \vec{f}.

A chicken and egg problem

- We know that right-hand side \vec{f}.
- So we can compute $f\left(x_{j}\right)$ for all x_{j}.

A chicken and egg problem

- We know that right-hand side \vec{f}.
- So we can compute $f\left(x_{j}\right)$ for all x_{j}.
- WTF? We are implementing a procedure to compute f !

A chicken and egg problem

- We know that right-hand side \vec{f}.
- So we can compute $f\left(x_{j}\right)$ for all x_{j}.
- WTF? We are implementing a procedure to compute f !
- There is a chicken and egg problem:
- We first need code to evaluate the $f\left(x_{j}\right)$
- In a second step, we can compute interpolation polynomials to put them into code that computes f

A chicken and egg problem

- We know that right-hand side \vec{f}.
- So we can compute $f\left(x_{j}\right)$ for all x_{j}.
- WTF? We are implementing a procedure to compute f !
- There is a chicken and egg problem:
- We first need code to evaluate the $f\left(x_{j}\right)$
- In a second step, we can compute interpolation polynomials to put them into code that computes f
- Practically:
- We write multi-precision procedures for the functions
- Those are based on inefficient Taylor polynomials in any case.
- Then, we use these code in order develop a libm

Which interpolation points to choose?

- The choice made for x_{j} has an influence on the error: Let p be a polynomial interpolating f at the x_{j}. Hence we have

$$
f(x)=p(x)+\frac{1}{(n+1)!} f^{(n+1)}(\xi) \prod_{j=0}^{n}\left(x-x_{j}\right)
$$

Which interpolation points to choose?

- The choice made for x_{j} has an influence on the error: Let p be a polynomial interpolating f at the x_{j}. Hence we have

$$
f(x)=p(x)+\frac{1}{(n+1)!} f^{(n+1)}(\xi) \prod_{j=0}^{n}\left(x-x_{j}\right)
$$

- Equidistant points are not optimal
- Chebyshev tried to minimize the error

Which interpolation points to choose?

- The choice made for x_{j} has an influence on the error: Let p be a polynomial interpolating f at the x_{j}. Hence we have

$$
f(x)=p(x)+\frac{1}{(n+1)!} f^{(n+1)}(\xi) \prod_{j=0}^{n}\left(x-x_{j}\right)
$$

- Equidistant points are not optimal
- Chebyshev tried to minimize the error
- Remez has finally given an iterative algorithm
- to compute the polynomial that is minimal w.r.t. the maximal error
- The algorithm "just" chooses the right interpolation points

Equidistant points

Error of p interpolating $f=\exp$ at equidistant points:

Equidistant points

Error of p interpolating $f=\exp$ at equidistant points:

- This is better than Taylor: the error is 2.5 times less
- The error starts to oscillate
- The error still explodes at the extremities
\Rightarrow we should try to put more points near the extremities

Chebyshev interpolation nodes

- The error is to be minimized for the maximum norm $\|\quad\|_{\infty}$:

$$
f(x)-p(x)=\frac{1}{(n+1)!} f^{(n+1)}(\xi) \prod_{j=0}^{n}\left(x-x_{j}\right)
$$

- P. L. Chebyshev: try to minimize

$$
\left\|\prod_{j=0}^{n}\left(x-x_{j}\right)\right\|_{\infty}
$$

- Particular points for which this is the case over $I=[a ; b]$:

$$
x_{j}=a+\frac{b-a}{2} \cdot\left(\cos \left(\frac{2 j-1}{2(n+1)}\right)+1\right)
$$

- These are the Chebyshev interpolation nodes.

Chebyshev interpolation nodes - example

Error of p interpolating $f=\exp$ at the Chebyshev nodes:

Chebyshev interpolation nodes - example

Error of p interpolating $f=\exp$ at the Chebyshev nodes:

- This is $10 \times$ better than for equidistant points!

Chebyshev interpolation nodes - example

Error of p interpolating $f=\exp$ at the Chebyshev nodes:

- This is $10 \times$ better than for equidistant points!
- It is not yet optimal: see plot
- There are functions where this sub-optimality is huge.

Remez polynomials

- Theorem (Chebyshev/ La Vallée-Poussin): The approximation polynomial is optimal iff all the extrema are the same height.

Remez polynomials

- Theorem (Chebyshev/ La Vallée-Poussin): The approximation polynomial is optimal iff all the extrema are the same height.

- E. Ya. Remez:
- Directly interpolate $f(x)+(-1)^{j} \cdot \varepsilon$ where ε is the height of the sought extrema.
- While the extrema are not at the same height, exchange the interpolation points with the points where the real extrema are located.

Remez polynomials

- Theorem (Chebyshev/ La Vallée-Poussin): The approximation polynomial is optimal iff all the extrema are the same height.

- E. Ya. Remez:
- Directly interpolate $f(x)+(-1)^{j} \cdot \varepsilon$ where ε is the height of the sought extrema.
- While the extrema are not at the same height, exchange the interpolation points with the points where the real extrema are located.
- This is the Remez algorithm
- It converges towards the polynomial minimal undermaximum norm
- That is why it is also called minimax algorithm

Example: Remez polynomial

Erreur of Remez polynomial p of degree 5 w.r.t $f=\exp$:

- The error is just a little smaller than for Chebyshev
- All the extrema are now at the same height

Yet another issue \rightarrow fpminimax

- Taylor, Chebyshev, Remez: polynomials with real coefficients

$$
p(x)=\sum_{i=0}^{n} c_{i} x^{i} \quad c_{i} \in \mathbb{R}
$$

- On computers, there are only FP numbers to store the c_{i}.

Yet another issue \rightarrow fpminimax

- Taylor, Chebyshev, Remez: polynomials with real coefficients

$$
p(x)=\sum_{i=0}^{n} c_{i} x^{i} \quad c_{i} \in \mathbb{R}
$$

- On computers, there are only FP numbers to store the c_{i}.
- When rounding coefficient by coefficient, $\tilde{c}_{i}={ }_{o_{i}}$, we destroy all the optimization work done by the Remez algorithm.
- The oscillations disappear.
- The error explodes.

Yet another issue \rightarrow fpminimax

- Taylor, Chebyshev, Remez: polynomials with real coefficients

$$
p(x)=\sum_{i=0}^{n} c_{i} x^{i} \quad c_{i} \in \mathbb{R}
$$

- On computers, there are only FP numbers to store the c_{i}.
- When rounding coefficient by coefficient, $\tilde{c}_{i}={ }^{\circ} c_{i}$, we destroy all the optimization work done by the Remez algorithm.
- The oscillations disappear.
- The error explodes.
- Need to compute approximation polynomials with FP coefficients

$$
p(x)=\sum_{i=0}^{n} c_{i} x^{i} \quad c_{i} \in \mathbb{F}_{k}
$$

- This is a hard discrete optimization problem
- Since 2006, there has been heuristic algorithms based on lattice reduction.

Sollya: Functions and domains

```
> f = exp(x);
> dom = [-1/4;1/4];
> f;
exp(x)
> diff(f);
exp(x)
> f(x + 2)
exp(2 + x)
> dom;
[-0.25;0.25]
> inf(dom);
-0.25
> sup(dom);
0.25
> plot(f, dom); /* Plot the function */
```


Sollya: The remez command

```
> f = exp(x); /* Define the function */
> dom = [-1/4;1/4]; /* Define the domain */
> n = 5; /* Set degree n to 5 */
> p = remez(f, n , dom); /* Remez polynomial */
> p;
1.00000001061667289247812...
```


Sollya: Looking at the error

```
> f = exp(x);
> dom = [-1/4;1/4];
> n = 5; /* Set degree n to 5 */
> p = remez(f, n , dom); /* Remez polynomial */
> err = p/f - 1; /* Define the rel. error */
> plot(err, dom);
    /* Define the function */
    /* Define the domain */
/* Plot the error */
```


Sollya: Optimizing for absolute or relative error

```
> f = log(1 + x); /* Define the function */
> dom = [-1/4;1/4]; /* Define the domain */
> n = 5; /* Set degree n to 5 */
> p = remez(f, n , dom); /* Remez polynomial */
> err = p/f - 1; /* Define the rel. error */
> plot(err, dom); /* Plot the error */
> /* Recompute Remez polynomial for rel. error */
> p = remez(1, [| 1,...,n l], dom, 1/f);
> err = p/f - 1; /* Define the rel. error */
> plot(err, dom); /* Plot the error */
```


Sollya: Computing and bounding the maximum error

```
> f = exp(x); /* Define the function */
> dom = [-1/4;1/4]; /* Define the domain */
> n = 5; /* Set degree n to 5 */
> p = remez(1, n , dom, 1/f); /* Remez polynomial */
> err = p/f - 1; /* Define the rel. error */
> /* Compute supremum norm to get max. error */
> errmax = supnorm(p, f, dom, relative, 2^(-10));
> errmax;
[1.0576...e-8; 1.0586...e-8]
> superrmax = sup(errmax);
> log2(superrmax);
-2.649...e1
```


Sollya: The fpminimax command

```
> f = exp(x);
> dom = [-1/4;1/4];
> n = 5;
> /* fpminimax with double prec. coeffs. */
> p = fpminimax(f, n, [|D...l], dom);
> err = p/f - 1; /* Define the rel. error */
errmax = supnorm(p, f, dom, relative, 2^(-10));
> superrmax = sup(errmax);
> log2(superrmax);
-2.649...e1
> display = hexadecimal;
Display mode is hexadecimal numbers.
> for i from 0 to degree(p) do coeff(p,i);
0x1.0000002c62a0cp0
0xf.fffff4495ce78p-4
```


Sollya: Computing the optimal degree

```
> f = exp(x);
> dom = [-1/4;1/4];
> targeterr = 2^-20;
> nmax = 18;
> n = 1;
> okay = false;
> while (!okay && (n <= nmax)) do {
        p = fpminimax(f, n, [|D...l], dom);
        errmax = sup(supnorm(p, f, dom, relative,
            2^(-10)));
        if (errmax <= targeterr) then okay = true;
        n = n + 1;
    };
> okay;
true;
> degree(p);
4
```


Advertisement: Sollya vs. Maple

- Both Maple and Sollya...
- implement the Remez algorithm
- have a plot command
- support some means to estimate the supremum norm $\|p / f-1\|_{\infty}$

Advertisement: Sollya vs. Maple

- Both Maple and Sollya...
- implement the Remez algorithm
- have a plot command
- support some means to estimate the supremum norm $\|p / f-1\|_{\infty}$
- But Maple...
- has trouble, in Remez, with relative errors and functions that vanish,
- implements the plot command with HW FP arithmetic. As the error is often less than 2^{-53}, the plot shows nonsense.
- Finally, Maple always underestimates the supremum norm.

Advertisement: Sollya vs. Maple

- Both Maple and Sollya...
- implement the Remez algorithm
- have a plot command
- support some means to estimate the supremum norm $\|p / f-1\|_{\infty}$
- But Maple...
- has trouble, in Remez, with relative errors and functions that vanish,
- implements the plot command with HW FP arithmetic. As the error is often less than 2^{-53}, the plot shows nonsense.
- Finally, Maple always underestimates the supremum norm.
- \rightsquigarrow Use Sollya!

Outline

(5) Gappa and error bounds

- Gappa's overview
- Gappa's inner workings
- Debugging proofs
- Proof hints

Gappa

Objective: help users verify/analyze their numerical applications.

Gappa

Objective: help users verify/analyze their numerical applications.
Design decisions:

- The tool verifies enclosures of mathematical expressions.
- These expressions can contain rounding operators to express limitations and properties of datatypes.
- Formal proofs are generated to provide confidence in the results.

Gappa

Objective: help users verify/analyze their numerical applications.
Design decisions:

- The tool verifies enclosures of mathematical expressions.
- These expressions can contain rounding operators to express limitations and properties of datatypes.
- Formal proofs are generated to provide confidence in the results.

How does it work?

- Interval arithmetic for propagating enclosures.
- Theorems about rounded values and round-off errors.
- Rewriting rules for tightening computed enclosures.

Bounding Expressions by Numeric Intervals

Basic element: an enclosure $e \in I$.

- e is an expression on real numbers:

$$
e::=\text { number }|-e| \circ(e)|e+e| e \times e|\sqrt{e}| \ldots
$$

- $I=[a, b]$ is an interval with dyadic rational bounds: $m \times 2^{n}$.

Bounding Expressions by Numeric Intervals

Basic element: an enclosure $e \in I$.

- e is an expression on real numbers:

$$
e::=\text { number }|-e| \circ(e)|e+e| e \times e|\sqrt{e}| \ldots
$$

- $I=[a, b]$ is an interval with dyadic rational bounds: $m \times 2^{n}$.

These enclosures are appropriate to express questions that usually arise when verifying numerical applications:

- no overflow, no invalid operations, etc
- variable domain: $\tilde{x} \in I$,
- accuracy of computed values
- absolute error: $\tilde{x}-x \in I$,
- relative error: $(\tilde{x}-x) / x \in I$.

Rounding Operators

Example (Floating-point arithmetic)

float<53, $-1074, n e>(x)$ is a number

- writable with 53 bits,
- multiple of 2^{-1074},
- closest to x when rounding to nearest, with tie break to even mantissas.
In other words, it is the default binary64 rounding of x.
It can also be written float<ieee_64,ne>(x).

Rounding Operators

Example (Floating-point arithmetic)

float<53,-1074,ne>(x) is a number

- writable with 53 bits,
- multiple of 2^{-1074},
- closest to x when rounding to nearest, with tie break to even mantissas.
In other words, it is the default binary64 rounding of x.
It can also be written float<ieee_64,ne>(x).

Example (Fixed-point arithmetic)

fixed<-16, $\mathrm{dn}>(\mathrm{x})$ is a number

- multiple of 2^{-16},
- closest to x when rounding toward $-\infty$.

In other words, it is $2^{-16} \cdot\left\lfloor x \cdot 2^{16}\right\rfloor$.

Syntax

```
# 1. Macros for expressions and rounding operators
one = 1;
one_third = float<ieee_32,ne>(1 / 3);
@D = float<ieee_64,ne>;
y = D(1 + D(x * one_third));
y_too D= one + x * one_third;
# 2. Logical formula to prove
{
    x in [1,2]
->
    one + 1 in [2,2] /\
    y - (1 + x * (1/3)) in ? # question mode
}
# 3. Hints for Gappa
```


Syntax

```
# 1. Macros for expressions and rounding operators
one = 1;
one_third = float<ieee_32,ne>(1 / 3);
@D = float<ieee_64,ne>;
y = D(1 + D(x * one_third));
y_too D= one + x * one_third;
# 2. Logical formula to prove
{
    x in [1,2]
->
    one + 1 in [2,2] /\
    y - (1 + x * (1/ 3)) in ? # question mode
}
# 3. Hints for Gappa
```

```
$ gappa test.g
Warning: y is being renamed to y_too at line 6 column 29
Results for x in [1, 2]:
one + one in [1b1 {2, 2^(1)}, 1b1 {2, 2^(1)}]
y_too- (one + x * (one / 3)) in [384307162470066815b-85 {9.93411e-09,
    2^(-26.585)}, 11453246219b-59 {1.98682e-08, 2^(-25.585)}]
```


Gappa Script for Exponential

```
@rnd = float<ieee_64,ne>;
TWO_4_RCP_LN_2 = rnd(2.308312065422341419207441504113376140594482421875e1);
TWO_M_4_LN_2 = rnd(4.33216987849965803891727489371987758204340934753418e-2);
c0 = rnd(1.00000000000000444089209850062616169452667236328125);
c1 = rnd(0.99999999999998134825318629737012088298797607421875);
c2 = rnd (0.499999999828379615429696514183888211846351623535156);
c3 = rnd (0.166666666806587454585653063077188562601804733276367);
c4 = rnd (4.1667643527348190157777452213849755935370922088623e-2);
c5 = rnd (8.3331924949543046549083058494034048635512590408325e-3);
x = rnd( }\mp@subsup{x}{-}{\prime}\mathrm{ ); # the input
n = int<ne>(rnd(x * TWO_4_RCP_LN_2));
r rnd= x - n * TWO_M_4_LN_2; # the reduced argument
Mr = x - n * Mln2div16;
p rnd= c0 + r * (c1 + r * (c2 + r * (c3 + r * (c4 + r * c5 ))));
Mp = c0 + Mr * (c1 + Mr * (c2 + Mr * (c3 + Mr * (c4 + Mr * c5))));
y rnd= tbl * p; # the value computed by the implementation
My = Mtbl * Mp;
{
    # all the hypotheses, including bounds by Sollya
    |x| <= 800 /人
    |TWO_M_4_LN_2 -/ Mln2div16| <= 1b-53 /\
    |tbl -/ Mtbl| <= 34497432307204232637036148220926061792329570434285b-218
    Mtbl in [1,2] /\
    |Mp -/ f| <= 3056780333711934143700435b-129
->
    # what is the relative global error?
    y -/ Mtbl * f in ?
}
```


Dependent Expressions and Interval Evaluation

Example

Compute the range of $\frac{\tilde{u} \cdot \tilde{v}-u \cdot v}{u \cdot v}$ knowing that:

- domains of u, v, \tilde{u}, and \tilde{v} are [1, 100];
- values are related: $\left|\frac{\tilde{u}-u}{u}\right| \leq 0.1$ and $\left|\frac{\tilde{v}-v}{v}\right| \leq 0.2$.

Dependent Expressions and Interval Evaluation

Example

Compute the range of $\frac{\tilde{\tilde{u} \cdot \tilde{v}-u \cdot v}}{u \cdot v}$ knowing that:

- domains of u, v, \tilde{u}, and \tilde{v} are [1, 100];
- values are related: $\left|\frac{\tilde{u}-u}{u}\right| \leq 0.1$ and $\left|\frac{\tilde{v}-v}{v}\right| \leq 0.2$.

Interval evaluation:

$$
\begin{aligned}
\frac{\tilde{u} \cdot \tilde{v}-u \cdot v}{u \cdot v} & \in \frac{[1,100] \times[1,100]-[1,100] \times[1,100]}{[1,100] \times[1,100]} \\
& \in \frac{[1,10000]-[1,10000]}{[1,10000]} \\
& \in[-9999,9999]
\end{aligned}
$$

Dependent Expressions and Interval Evaluation

Example

Compute the range of $\frac{\tilde{u} \cdot \tilde{v}-u \cdot v}{u \cdot v}$ knowing that:

- domains of u, v, \tilde{u}, and \tilde{v} are [1, 100];
- values are related: $\left|\frac{\tilde{u}-u}{u}\right| \leq 0.1$ and $\left|\frac{\tilde{v}-v}{v}\right| \leq 0.2$.

Interval evaluation:

$$
\begin{aligned}
\frac{\tilde{u} \cdot \tilde{v}-u \cdot v}{u \cdot v} & \in \frac{[1,100] \times[1,100]-[1,100] \times[1,100]}{[1,100] \times[1,100]} \\
& \in \frac{[1,10000]-[1,10000]}{[1,10000]} \\
& \in[-9999,9999] \quad \text { Bad! }
\end{aligned}
$$

Naive interval arithmetic does not track dependencies between values.

Rewriting Expressions to Exhibit Dependencies

Example

Compute the range of $\frac{\tilde{u} \cdot \tilde{v}-u \cdot v}{u \cdot v}$ knowing that

- values are related: $\left|\frac{\tilde{u}-u}{u}\right| \leq 0.1$ and $\left|\frac{\tilde{v}-v}{v}\right| \leq 0.2$.

Solution: make dependencies explicit.

$$
\frac{\tilde{u} \cdot \tilde{v}-u \cdot v}{u \cdot v}=\frac{\tilde{u}-u}{u}+\frac{\tilde{v}-v}{v}+\frac{\tilde{u}-u}{u} \times \frac{\tilde{v}-v}{v}
$$

Rewriting Expressions to Exhibit Dependencies

Example

Compute the range of $\frac{\tilde{u} \cdot \tilde{v}-u \cdot v}{u \cdot v}$ knowing that

- values are related: $\left|\frac{\tilde{u}-u}{u}\right| \leq 0.1$ and $\left|\frac{\tilde{v}-v}{v}\right| \leq 0.2$.

Solution: make dependencies explicit.

$$
\frac{\tilde{u} \cdot \tilde{v}-u \cdot v}{u \cdot v}=\frac{\tilde{u}-u}{u}+\frac{\tilde{v}-v}{v}+\frac{\tilde{u}-u}{u} \times \frac{\tilde{v}-v}{v}
$$

Interval evaluation:

$$
\begin{aligned}
\frac{\tilde{u} \cdot \tilde{v}-u \cdot v}{u \cdot v} & \in[-0.1,0.1]+[-0.2,0.2]+[-0.1,0.1] \times[-0.2,0.2] \\
& \in[-0.32,0.32]
\end{aligned}
$$

Rewriting Expressions to Exhibit Dependencies

Example

Compute the range of $\frac{\tilde{u} \cdot \tilde{v}-u \cdot v}{u \cdot v}$ knowing that

- values are related: $\left|\frac{\tilde{u}-u}{u}\right| \leq 0.1$ and $\left|\frac{\tilde{v}-v}{v}\right| \leq 0.2$.

Solution: make dependencies explicit.

$$
\frac{\tilde{u} \cdot \tilde{v}-u \cdot v}{u \cdot v}=\frac{\tilde{u}-u}{u}+\frac{\tilde{v}-v}{v}+\frac{\tilde{u}-u}{u} \times \frac{\tilde{v}-v}{v}
$$

Interval evaluation:

$$
\begin{aligned}
\frac{\tilde{u} \cdot \tilde{v}-u \cdot v}{u \cdot v} & \in[-0.1,0.1]+[-0.2,0.2]+[-0.1,0.1] \times[-0.2,0.2] \\
& \in[-0.32,0.32]
\end{aligned}
$$

Gappa automatically rewrites expressions in order to get tight enclosures when computing error bounds.

Gappa's Inner Workings

(1) Massage the user goal into a simple logical formula:

$$
e_{1} \in I_{1} \wedge \cdots \wedge e_{n} \in I_{n} \quad \Longrightarrow \quad e_{n+1} \in I_{n+1}
$$

(2) Guess expressions and instances of theorems potentially useful as intermediate steps for bounding e_{1}, \cdots, e_{n+1}.
(3) Assuming that $e_{1} \in I_{1}, \cdots, e_{n} \in I_{n}$ hold, perform a saturation on the selected theorems until the enclosure $e_{n+1} \in I_{n+1}$ is proved.
(Keep track of the theorems as they are applied.)
(9) Generate a formal proof.

Expression Properties

Gappa handles more than just enclosures:

$$
\operatorname{BND}(x, I) \quad \mid \mathrm{x} \text { in } \mathrm{I}
$$

Expression Properties

Gappa handles more than just enclosures:

$$
\begin{aligned}
\operatorname{BND}(x, I) & \equiv x \in I \\
\operatorname{ABS}(x, I) & \equiv|x| \in I
\end{aligned}
$$

$$
x \text { in } I
$$

Expression Properties

Gappa handles more than just enclosures:

$$
\begin{array}{lll|l}
\operatorname{BND}(x, l) & \equiv x \in I & & \mathrm{x} \text { in } \mathrm{I} \\
\operatorname{ABS}(x, I) & \equiv|x| \in I & & \\
\operatorname{REL}(x, y, I) & \equiv \exists \varepsilon \in I, \quad x=y \cdot(1+\varepsilon) & \mathrm{x}-/ \mathrm{y} \text { in } \mathrm{I}
\end{array}
$$

Expression Properties

Gappa handles more than just enclosures:

$$
\begin{array}{lll|l}
\operatorname{BND}(x, I) & \equiv x \in I & & x \text { in } I \\
\operatorname{ABS}(x, I) & \equiv|x| \in I & & \\
\operatorname{REL}(x, y, I) & \equiv \exists \varepsilon \in I, & x=y \cdot(1+\varepsilon) & \mathrm{x}-/ \mathrm{y} \text { in } \mathrm{I} \\
\operatorname{FIX}(x, e) & \equiv \exists m \in \mathbb{Z}, & x=m \cdot 2^{e} & @ \operatorname{FIX}(\mathrm{x}, \mathrm{e})
\end{array}
$$

Expression Properties

Gappa handles more than just enclosures:

$$
\begin{array}{lll|l}
\operatorname{BND}(x, l) & \equiv x \in I & & x \text { in } I \\
\operatorname{ABS}(x, I) & \equiv|x| \in I & & \\
\operatorname{REL}(x, y, I) & \equiv \exists \varepsilon \in I, & x=y \cdot(1+\varepsilon) & \mathrm{x}-/ \mathrm{y} \text { in } \\
\operatorname{FIX}(x, e) & \equiv \exists m \in \mathbb{Z}, & x=m \cdot 2^{e} & @ \operatorname{FIX}(\mathrm{x}, \mathrm{e}) \\
\operatorname{FLT}(x, p) & \equiv \exists m, e \in \mathbb{Z}, & x=m \cdot 2^{e} \wedge|m|<2^{p} & @ \operatorname{CLT}(\mathrm{x}, \mathrm{p})
\end{array}
$$

Expression Properties

Gappa handles more than just enclosures:

$\operatorname{BND}(x, l)$	$\equiv x \in I$		x in I
$\operatorname{ABS}(x, l)$	$\equiv\|x\| \in I$		
$\operatorname{REL}(x, y, l)$	$\equiv \exists \varepsilon \in I$,	$x=y \cdot(1+\varepsilon)$	$\mathrm{x}-/ \mathrm{y}$ in I
$\operatorname{FIX}(x, e)$	$\equiv \exists m \in \mathbb{Z}$,	$x=m \cdot 2^{e}$	$@ \operatorname{FIX}(\mathrm{x}, \mathrm{e})$
$\operatorname{FLT}(x, p)$	$\equiv \exists m, e \in \mathbb{Z}$,	$x=m \cdot 2^{e} \wedge\|m\|<2^{p}$	$@ \operatorname{OLT}(\mathrm{x}, \mathrm{p})$
$\operatorname{NZR}(x)$	$\equiv x \neq 0$		

Expression Properties

Gappa handles more than just enclosures:

$$
\begin{array}{lll|l}
\operatorname{BND}(x, I) & \equiv x \in I & & \mathrm{x} \text { in } \mathrm{I} \\
\operatorname{ABS}(x, I) & \equiv|x| \in I & & \\
\operatorname{REL}(x, y, I) & \equiv \exists \varepsilon \in I, & x=y \cdot(1+\varepsilon) & \mathrm{x}-/ \mathrm{y} \text { in } \mathrm{I} \\
\operatorname{FIX}(x, e) & \equiv \exists m \in \mathbb{Z}, & x=m \cdot 2^{e} & @ \operatorname{FIX}(\mathrm{x}, \mathrm{e}) \\
\operatorname{FLT}(x, p) & \equiv \exists m, e \in \mathbb{Z}, & x=m \cdot 2^{e} \wedge|m|<2^{p} & @ \operatorname{OLT}(\mathrm{x}, \mathrm{p}) \\
\operatorname{NZR}(x) & \equiv x \neq 0 & & \\
\operatorname{EQL}(x, y) & \equiv x=y & & \mathrm{x}=\mathrm{y}
\end{array}
$$

Expression Properties

Gappa handles more than just enclosures:

$$
\begin{array}{lll|l}
\operatorname{BND}(x, l) & \equiv x \in I & & \mathrm{x} \text { in } \mathrm{I} \\
\operatorname{ABS}(x, I) & \equiv|x| \in I & & \\
\operatorname{REL}(x, y, I) & \equiv \exists \varepsilon \in I, & x=y \cdot(1+\varepsilon) & \mathrm{x}-/ \mathrm{y} \text { in } \mathrm{I} \\
\operatorname{FIX}(x, e) & \equiv \exists m \in \mathbb{Z}, & x=m \cdot 2^{e} & @ \operatorname{FIX}(\mathrm{x}, \mathrm{e}) \\
\operatorname{FLT}(x, p) & \equiv \exists m, e \in \mathbb{Z}, & x=m \cdot 2^{e} \wedge|m|<2^{p} & @ \operatorname{@LT}(\mathrm{x}, \mathrm{p}) \\
\operatorname{NZR}(x) & \equiv x \neq 0 & & \\
\operatorname{EQL}(x, y) & \equiv x=y & & \mathrm{x}=\mathrm{y}
\end{array}
$$

Variants: $\mathrm{x}<=\mathrm{c}, \mathrm{x}>=\mathrm{c}, \quad|\mathrm{x}|<=\mathrm{c},|\mathrm{x}-/ \mathrm{y}|<=\mathrm{c}$.

Expression Properties

Gappa handles more than just enclosures:

$$
\begin{array}{lll|l}
\operatorname{BND}(x, I) & \equiv x \in I & & \mathrm{x} \text { in } \mathrm{I} \\
\operatorname{ABS}(x, I) & \equiv|x| \in I & & \\
\operatorname{REL}(x, y, I) & \equiv \exists \varepsilon \in I, & x=y \cdot(1+\varepsilon) & \mathrm{x}-/ \mathrm{y} \text { in } \mathrm{I} \\
\operatorname{FIX}(x, e) & \equiv \exists m \in \mathbb{Z}, & x=m \cdot 2^{e} & @ \operatorname{FIX}(\mathrm{x}, \mathrm{e}) \\
\operatorname{FLT}(x, p) & \equiv \exists m, e \in \mathbb{Z}, & x=m \cdot 2^{e} \wedge|m|<2^{p} & @ \operatorname{@LT}(\mathrm{x}, \mathrm{p}) \\
\operatorname{NZR}(x) & \equiv x \neq 0 & & \\
\operatorname{EQL}(x, y) & \equiv x=y & & \mathrm{x}=\mathrm{y}
\end{array}
$$

Variants: $\mathrm{x}<=\mathrm{c}, \mathrm{x}>=\mathrm{c}, \quad|\mathrm{x}|<=\mathrm{c},|\mathrm{x}-/ \mathrm{y}|<=\mathrm{c}$.
Question mode: replace "in I" by "in ?".

What Could Possibly Go Wrong?

Example (Wrong)

The relative round-off error is bounded:
\{ float<ieee_64, ne>(x) -/ x in ? \}

What Could Possibly Go Wrong?

Example (Wrong)

The relative round-off error is bounded:
\{ float<ieee_64,ne>(x) -/ x in ? \}

Example (Correct)

But only outside the subnormal range:

```
{ |x| in [1e-6,1e6] ->
    |float<ieee_64,ne>(x) -/ x| <= 1b-53 }
```


What Could Possibly Go Wrong?

Example (Wrong)

The relative round-off error of the FP addition is bounded: \{ float<ieee_64, ne>($x+y$) -/ ($x+y$) in ? \}

What Could Possibly Go Wrong?

Example (Wrong)

The relative round-off error of the FP addition is bounded:

```
{ float<ieee_64,ne>(x + y) -/ (x + y) in ? }
```


Example (Correct)

But only if the inputs are floating-point numbers:

```
@rnd = float<ieee_64,ne>;
x = rnd(x_); y = rnd(y_);
{ |rnd(x + y) - / (x + y)| <= 1b-53 }
```


What Could Possibly Go Wrong?

Example (Wrong)

The relative round-off error of the FP addition is bounded:

```
{ float<ieee_64,ne>(x + y) -/ (x + y) in ? }
```


Example (Correct)

But only if the inputs are floating-point numbers:

```
@rnd = float<ieee_64,ne>;
x = rnd(x_); y = rnd(y_);
{ |rnd(x + y) -/ (x + y)| <= 1b-53 }
```


Example (Minimal)

Actually, that is how Gappa does the proof:

```
@rnd = float<53,-1074,ne>;
{ @FIX(z,-1074) -> |rnd(z) -/ z| <= 1b-53 }
```


What Could Possibly Go Wrong?

Example (Too difficult)

\{ int $\langle\operatorname{dn}>(x+y)-(y+x)$ in ? \}

What Could Possibly Go Wrong?

Example (Too difficult)

\{ int<dn>($x+y)-(y+x)$ in ? \}

Example (Too easy)
Gappa is guided by the syntax and structure of expressions: \{ int<dn>($x+y$) - ($x+y$) in [-1,0] \}

What Could Possibly Go Wrong?

Example (Dependencies)
 \{ x in $[0,1]$-> $\mathrm{x} *(1-\mathrm{x})$ in ? \} \# [0,1]

What Could Possibly Go Wrong?

Example (Dependencies)
 \{ x in $[0,1]->\mathrm{x} *(1-\mathrm{x})$ in ? \} \# [0,1]

Example (Sub-intervals)

```
{ x in [0,1] -> x * (1 - x) in ? } # [0,0.375]
$ x; # $ x in 4;
# x in [0,0.25] [0.25,0.5] [0.5,0.75] [0.75,1]
```


What Could Possibly Go Wrong?

Example (Dependencies)

```
{ x in [0,1] -> x * (1 - x) in ? } # [0,1]
```

Example (Sub-intervals)

```
{ x in [0,1] -> x * (1 - x) in ? } # [0,0.375]
$ x; # $ x in 4;
# x in [0,0.25] [0.25,0.5] [0.5,0.75] [0.75,1]
```

Example (Rewriting)

```
{ x in [0,1] -> x * (1 - x) in [0,0.25] }
x * (1 - x) -> 1/4 - (x - 1/2) * (x - 1/2);
```


What Could Possibly Go Wrong?

Example (Exponential)

Why does the script for exponential fail?
\{ $|x|<=800 / \bigwedge$
|TWO_M_4_LN_2 -/ Mln2div16| <= 1b-53 /
->

| r | in $? ~ / \backslash$ |
| :--- | :--- | :--- |
| p | in $? ~\}$ |$\quad \#|r|<=2^{\wedge}(10.6)$

Due to overestimation, p possibly crosses zero; the relative error between p and \hat{p} is thus meaningless!

What Could Possibly Go Wrong?

Example (Exponential)

Why does the script for exponential fail?
\{ $|x|<=800 / 八$
|TWO_M_4_LN_2 -/ Mln2div16| <= 1b-53 /
->

Due to overestimation, p possibly crosses zero; the relative error between p and \hat{p} is thus meaningless!

Example (Sub-intervals)
\$ x ;
gives $|r| \leq 2^{8.6}$ and $|p| \leq 2^{36.3}$. So there are dependencies!

Fixing the Proof of Exponential

Example (Argument reduction)

$n=\lfloor 0(x \cdot$ TWO_4_RCP_LN_2 $)\rceil$.
$\hat{r}=x-n \cdot \hat{c}$ with $\hat{c}=\ln 2 / 16$.
Note: x appears twice in \hat{r}, hence the overestimation.

Fixing the Proof of Exponential

Example (Argument reduction)

$n=\lfloor 0(x \cdot$ TWO_4 RCP_LN_2 $)\rceil$.
$\hat{r}=x-n \cdot \hat{c}$ with $\hat{c}=\ln 2 / 16$.
Note: x appears twice in \hat{r}, hence the overestimation.

Reducing dependencies:
$\hat{r}=x-x \cdot$ TWO_4_RCP_LN_2 $\cdot \hat{c}-\left(n-x \cdot T W O _4 _R C P _L N _2\right) \cdot \hat{c}$

Fixing the Proof of Exponential

Example (Argument reduction)
$n=\lfloor 0(x \cdot T W O-4$ RCP LN_-2 $) 7$.
$\hat{r}=x-n \cdot \hat{c}$ with $\hat{c}=\ln 2 / 16$.
Note: x appears twice in \hat{r}, hence the overestimation.

Reducing dependencies:

$$
\begin{aligned}
\hat{r} & =x-x \cdot \text { TWO_4_RCP_LN_2 } \cdot \hat{c}-(n-x \cdot \text { TWO_4_RCP_LN_2 }) \cdot \hat{c} \\
& =x \cdot(1-\text { TWO_4_RCP_LN_2 } \cdot \hat{c})-(n-x \cdot \text { TWO_4_RCP_LN_2 }) \cdot \hat{c}
\end{aligned}
$$

Fixing the Proof of Exponential

Example (Argument reduction)
$n=\lfloor 0(x \cdot T W O-4$ RCP LN_-2 $) 7$.
$\hat{r}=x-n \cdot \hat{c}$ with $\hat{c}=\ln 2 / 16$.
Note: x appears twice in \hat{r}, hence the overestimation.

Reducing dependencies:

$$
\begin{aligned}
\hat{r} & =x-x \cdot \text { TWO_4_RCP_LN_2 } \cdot \hat{c}-(n-x \cdot \text { TWO_4_RCP_LN_2 }) \cdot \hat{c} \\
& =x \cdot(1-\text { TWO_4_RCP_LN_2 } \cdot \hat{c})-(n-x \cdot \text { TWO_4_RCP_LN_2 }) \cdot \hat{c}
\end{aligned}
$$

Example (Rewriting hint for Gappa)

```
# any property on the lhs can be obtained from the rhs
x - n * Mln2div16 -> x * (1 - TWO_4_RCP_LN_2 *
    Mln2div16) - (n - x * TWO_4_RCP_LN_2) * Mln2div16;
```


Proof Hints

- Prove by splitting the range of x
- into 4 parts: \$ x;
- into 10 parts: \$ x in 10 ;
- at points $1,10,11$: $\$ \mathrm{x}$ in $(1,10,11)$;

Proof Hints

- Prove by splitting the range of x
- into 4 parts: \$ x;
- into 10 parts: \$ x in 10 ;
- at points $1,10,11$: \$ x in ($1,10,11$);
- Prove a property on y by bisecting the interval of $x: y \$ x$;

Proof Hints

- Prove by splitting the range of x
- into 4 parts: \$ x;
- into 10 parts: \$ x in 10 ;
- at points $1,10,11$: \$ x in $(1,10,11)$;
- Prove a property on y by bisecting the interval of $x: y \$ x$;
- Compute and use the error between y and $x: y{ }^{\sim} \mathrm{x}$;

Proof Hints

- Prove by splitting the range of x
- into 4 parts: \$ x;
- into 10 parts: $\$ \mathrm{x}$ in 10 ;
- at points $1,10,11: \$ \mathrm{x}$ in $(1,10,11)$;
- Prove a property on y by bisecting the interval of $x: y \$ x$;
- Compute and use the error between y and $x: y{ }^{\sim} \mathrm{x}$;
- Use y when looking for properties of x
- always: x -> y;
- only when a constraint is met: x -> $\mathrm{y}\{\mathrm{z}>=3\}$;

Outline

(6) Supremum norm

- Verified supremum norms
- Previous approaches for supremum norms
- Sollya's supremum norm approach
- Supremum norm algorithm
- Supremum norms on polynomials
- Taylor Models
- Use of the supremum norm algorithm in Sollya

Verified supremum norms

- Let f be a function given by an expression, p a polynomial, $[a, b]$ an interval.

Verified supremum norms

- Let f be a function given by an expression, p a polynomial, $[a, b]$ an interval.
Let $\eta>0$ be a quality parameter.

Verified supremum norms

- Let f be a function given by an expression, p a polynomial, $[a, b]$ an interval.
Let $\eta>0$ be a quality parameter.
Let mode $\in\{$ absolute, relative $\}$ (ε defined accordingly).

Verified supremum norms

- Let f be a function given by an expression, p a polynomial, $[a, b]$ an interval.
Let $\eta>0$ be a quality parameter.
Let mode $\in\{$ absolute, relative $\}$ (ε defined accordingly).
Find ℓ and u such that

$$
\left\{\begin{aligned}
\|\varepsilon\|_{\infty} & \in[\ell, u] \\
(u-\ell) / \ell & \leq \eta .
\end{aligned}\right.
$$

Verified supremum norms

- Let f be a function given by an expression, p a polynomial, $[a, b]$ an interval.
Let $\eta>0$ be a quality parameter.
Let mode $\in\{$ absolute, relative $\}$ (ε defined accordingly).
Find ℓ and u such that

$$
\left\{\begin{aligned}
\|\varepsilon\|_{\infty} & \in[\ell, u] \\
(u-\ell) / \ell & \leq \eta .
\end{aligned}\right.
$$

- These properties must be rigorously fulfilled.

Verified supremum norms

- Let f be a function given by an expression, p a polynomial, $[a, b]$ an interval.
Let $\eta>0$ be a quality parameter.
Let mode $\in\{$ absolute, relative $\}$ (ε defined accordingly).
Find ℓ and u such that

$$
\left\{\begin{aligned}
\|\varepsilon\|_{\infty} & \in[\ell, u] \\
(u-\ell) / \ell & \leq \eta .
\end{aligned}\right.
$$

- These properties must be rigorously fulfilled.
- Particular difficulty: removable discontinuities e.g., when $f(x)=\sin (x)$ and $p(x)=x q(x)$.

Verified supremum norms

- Let f be a function given by an expression, p a polynomial, $[a, b]$ an interval.
Let $\eta>0$ be a quality parameter.
Let mode $\in\{$ absolute, relative $\}$ (ε defined accordingly).
Find ℓ and u such that

$$
\left\{\begin{aligned}
\|\varepsilon\|_{\infty} & \in[\ell, u] \\
(u-\ell) / \ell & \leq \eta
\end{aligned}\right.
$$

- These properties must be rigorously fulfilled.
- Particular difficulty: removable discontinuities e.g., when $f(x)=\sin (x)$ and $p(x)=x q(x)$.
- The algorithm should be able to generate a formal certificate.

State of the art

It is a univariate global optimization problem.

State of the art

It is a univariate global optimization problem.

- Purely numerical algorithms: find the zeros of ε^{\prime} (e.g., Newton's algorithm).

State of the art

It is a univariate global optimization problem.

- Purely numerical algorithms: find the zeros of ε^{\prime} (e.g., Newton's algorithm).
\rightsquigarrow Not rigorous: we might miss some of the zeros.

State of the art

It is a univariate global optimization problem.

- Purely numerical algorithms: find the zeros of ε^{\prime} (e.g., Newton's algorithm).
\rightsquigarrow Not rigorous: we might miss some of the zeros.
- General-purpose rigorous global optimization algorithm: (Hansen 1992), (Kearfott 1996), (Messine 1997).

State of the art

It is a univariate global optimization problem.

- Purely numerical algorithms: find the zeros of ε^{\prime} (e.g., Newton's algorithm). \rightsquigarrow Not rigorous: we might miss some of the zeros.
- General-purpose rigorous global optimization algorithm: (Hansen 1992), (Kearfott 1996), (Messine 1997).
Principle: branch and bound. Maintain ℓ such that $\ell \leq\|\varepsilon\|_{\infty}$.

State of the art

It is a univariate global optimization problem.

- Purely numerical algorithms: find the zeros of ε^{\prime} (e.g., Newton's algorithm).
\rightsquigarrow Not rigorous: we might miss some of the zeros.
- General-purpose rigorous global optimization algorithm: (Hansen 1992), (Kearfott 1996), (Messine 1997).
Principle: branch and bound. Maintain ℓ such that $\ell \leq\|\varepsilon\|_{\infty}$.
Reduce the width:
\rightsquigarrow bisection, Interval Newton's algorithm, Hansen's algorithm.

State of the art

It is a univariate global optimization problem.

- Purely numerical algorithms: find the zeros of ε^{\prime} (e.g., Newton's algorithm).
\rightsquigarrow Not rigorous: we might miss some of the zeros.
- General-purpose rigorous global optimization algorithm: (Hansen 1992), (Kearfott 1996), (Messine 1997).
Principle: branch and bound. Maintain ℓ such that $\ell \leq\|\varepsilon\|_{\infty}$.
Reduce the width:
\rightsquigarrow bisection, Interval Newton's algorithm, Hansen's algorithm.
Eliminate sub-intervals:
\rightsquigarrow If $\varepsilon(I) \subseteq[-\ell, \ell]$, eliminate I.
\rightsquigarrow If $\varepsilon^{\prime}(I) \not \supset 0$ eliminate I.

State of the art

It is a univariate global optimization problem.

- Purely numerical algorithms: find the zeros of ε^{\prime} (e.g., Newton's algorithm). \rightsquigarrow Not rigorous: we might miss some of the zeros.
- General-purpose rigorous global optimization algorithm: (Hansen 1992), (Kearfott 1996), (Messine 1997).
Principle: branch and bound. Maintain ℓ such that $\ell \leq\|\varepsilon\|_{\infty}$.
Reduce the width:
\rightsquigarrow bisection, Interval Newton's algorithm, Hansen's algorithm.
Eliminate sub-intervals:
\rightsquigarrow If $\varepsilon(I) \subseteq[-\ell, \ell]$, eliminate I.
\rightsquigarrow If $\varepsilon^{\prime}(I) \not \supset 0$ eliminate I.
Increase ℓ :
\rightsquigarrow If $\varepsilon(I)=[\alpha, \beta]$ with $\alpha \geq \ell$, set $\ell \leftarrow \alpha$.
\leadsto Idem if $\beta \leq-\ell$.

Dependency phenomenon

- GO algorithms relies on the fact that $\varepsilon(I), \varepsilon^{\prime}(I)$, etc. give relevant information.
- In our case this assumption is not fulfilled due to the dependency phenomenon.

Dependency phenomenon

- GO algorithms relies on the fact that $\varepsilon(I), \varepsilon^{\prime}(I)$, etc. give relevant information.
- In our case this assumption is not fulfilled due to the dependency phenomenon.
Example: $I=[0,1], f=\exp (x), \operatorname{deg}(p)=13,\|p-f\|_{\infty} \leq 2 \mathrm{e}-19$.

Dependency phenomenon

- GO algorithms relies on the fact that $\varepsilon(I), \varepsilon^{\prime}(I)$, etc. give relevant information.
- In our case this assumption is not fulfilled due to the dependency phenomenon.
Example: $I=[0,1], f=\exp (x), \operatorname{deg}(p)=13,\|p-f\|_{\infty} \leq 2 \mathrm{e}-19$.

$$
\begin{aligned}
& \text { Let } h \ll 1 \text {. On } J=[u, u+h]: \\
& \varepsilon(J) \text { computed through } p(J)-f(J) \text {. }
\end{aligned}
$$

Since $h \ll 1$, $f(J) \simeq[f(u), f(u)+\mathcal{O}(h)]$.

Dependency phenomenon

- GO algorithms relies on the fact that $\varepsilon(I), \varepsilon^{\prime}(I)$, etc. give relevant information.
- In our case this assumption is not fulfilled due to the dependency phenomenon.
Example: $I=[0,1], f=\exp (x), \operatorname{deg}(p)=13,\|p-f\|_{\infty} \leq 2 \mathrm{e}-19$.

Let $h \ll 1$. On $J=[u, u+h]$: $\varepsilon(J)$ computed through $p(J)-f(J)$.
p(J) \quad Since $h \ll 1$, $f(J) \simeq[f(u), f(u)+\mathcal{O}(h)]$.

First case: $h \gg\|\varepsilon\|_{\infty}$

Dependency phenomenon

- GO algorithms relies on the fact that $\varepsilon(I), \varepsilon^{\prime}(I)$, etc. give relevant information.
- In our case this assumption is not fulfilled due to the dependency phenomenon.
Example: $I=[0,1], f=\exp (x), \operatorname{deg}(p)=13,\|p-f\|_{\infty} \leq 2 \mathrm{e}-19$.

$$
\begin{aligned}
& \text { Let } h \ll 1 \text {. On } J=[u, u+h]: \\
& \varepsilon(J) \text { computed through } p(J)-f(J) \text {. }
\end{aligned}
$$

Since $h \ll 1$,

$$
f(J) \simeq[f(u), f(u)+\mathcal{O}(h)] .
$$

First case: $h \gg\|\varepsilon\|_{\infty}$ Second case: $h \ll\|\varepsilon\|_{\infty}$

Dependency phenomenon (2)

This phenomenon appears at several orders:

$$
\begin{aligned}
\|\varepsilon\|_{\infty} & =1.4 \mathrm{e}-19 \\
\left\|\varepsilon^{\prime}\right\|_{\infty} & =5.6 \mathrm{e}-17 \\
\left\|\varepsilon^{\prime \prime}\right\|_{\infty} & =7.3 \mathrm{e}-15 \\
\left\|\varepsilon^{(3)}\right\|_{\infty} & =5.6 \mathrm{e}-13 \\
\left\|\varepsilon^{(4)}\right\|_{\infty} & =3.0 \mathrm{e}-11 \\
\left\|\varepsilon^{(5)}\right\|_{\infty} & =1.2 \mathrm{e}-9 \\
\left\|\varepsilon^{(6)}\right\|_{\infty} & =3.8 \mathrm{e}-8 .
\end{aligned}
$$

Dependency phenomenon (2)

This phenomenon appears at several orders:

$$
\begin{aligned}
\|\varepsilon\|_{\infty} & =1.4 \mathrm{e}-19 \\
\left\|\varepsilon^{\prime}\right\|_{\infty} & =5.6 \mathrm{e}-17 \\
\left\|\varepsilon^{\prime \prime}\right\|_{\infty} & =7.3 \mathrm{e}-15 \\
\left\|\varepsilon^{(3)}\right\|_{\infty} & =5.6 \mathrm{e}-13 \\
\left\|\varepsilon^{(4)}\right\|_{\infty} & =3.0 \mathrm{e}-11 \\
\left\|\varepsilon^{(5)}\right\|_{\infty} & =1.2 \mathrm{e}-9 \\
\left\|\varepsilon^{(6)}\right\|_{\infty} & =3.8 \mathrm{e}-8 .
\end{aligned}
$$

In conclusion: general-purpose techniques of GO useless.

Ad-hoc techniques

- Use an intermediate polynomial $T \simeq f$.
- The dependency in $p-f$ becomes a cancellation in the coefficients of $p-T$.

Ad-hoc techniques

- Use an intermediate polynomial $T \simeq f$.
- The dependency in $p-f$ becomes a cancellation in the coefficients of $p-T$.
- Idea used by (Krämer 1996), (Harrison 1997): functions manually handled, one by one.

Ad-hoc techniques

- Use an intermediate polynomial $T \simeq f$.
- The dependency in $p-f$ becomes a cancellation in the coefficients of $p-T$.
- Idea used by (Krämer 1996), (Harrison 1997): functions manually handled, one by one.
- Makino and Berz: use Taylor Models for computing T. More systematic, but does not guarantee the final quality of $[\ell, u]$.

Ad-hoc techniques

- Use an intermediate polynomial $T \simeq f$.
- The dependency in $p-f$ becomes a cancellation in the coefficients of $p-T$.
- Idea used by (Krämer 1996), (Harrison 1997): functions manually handled, one by one.
- Makino and Berz: use Taylor Models for computing T. More systematic, but does not guarantee the final quality of $[\ell, u]$.
- None of these techniques correctly handle the removable discontinuities.

Our approach

- Automatic: no parameter requires to be manually adjusted.

Our approach

- Automatic: no parameter requires to be manually adjusted.
- Accept any function f defined by an expression.

Our approach

- Automatic: no parameter requires to be manually adjusted.
- Accept any function f defined by an expression.
- Guaranteed a priori quality η of the result.

Our approach

- Automatic: no parameter requires to be manually adjusted.
- Accept any function f defined by an expression.
- Guaranteed a priori quality η of the result.
- Correctly handles the removable discontinuities in usual cases.

Our approach

- Automatic: no parameter requires to be manually adjusted.
- Accept any function f defined by an expression.
- Guaranteed a priori quality η of the result.
- Correctly handles the removable discontinuities in usual cases.
- Could generate a complete formal proof without much effort.

How a numerical algorithm gives a rigorous bound

- Numerical algorithms give relevant information:
(1) They are often very reliable.

How a numerical algorithm gives a rigorous bound

- Numerical algorithms give relevant information:
(1) They are often very reliable.
(2) They give a rigorous lower bound ℓ.
- Algorithm:

Numerically find the zeros of $\varepsilon^{\prime}: L=\left[z_{1}, \ldots, z_{k}\right]$; for $i \leftarrow 1$ to k
$-\quad\left[a_{i}, b_{i}\right] \leftarrow\left|\varepsilon\left(\left[z_{i}, z_{i}\right]\right)\right| ;$ end $\ell \leftarrow \max \left|a_{i}\right| ;$ return ℓ;

How a numerical algorithm gives a rigorous bound

- Numerical algorithms give relevant information:
(1) They are often very reliable.
(2) They give a rigorous lower bound ℓ.
- Algorithm:

Numerically find the zeros of $\varepsilon^{\prime}: L=\left[z_{1}, \ldots, z_{k}\right]$; for $i \leftarrow 1$ to k
$-\quad\left[a_{i}, b_{i}\right] \leftarrow\left|\varepsilon\left(\left[z_{i}, z_{i}\right]\right)\right| ;$ end $\ell \leftarrow \max \left|a_{i}\right| ;$ return ℓ;

- It is very easy to increase the accuracy of ℓ.

How a numerical algorithm gives a rigorous bound

- Numerical algorithms give relevant information:
(1) They are often very reliable.
(2) They give a rigorous lower bound ℓ.
- Algorithm:

Numerically find the zeros of $\varepsilon^{\prime}: L=\left[z_{1}, \ldots, z_{k}\right]$; for $i \leftarrow 1$ to k
$-\quad\left[a_{i}, b_{i}\right] \leftarrow\left|\varepsilon\left(\left[z_{i}, z_{i}\right]\right)\right| ;$ end $\ell \leftarrow \max \left|a_{i}\right| ;$ return ℓ;

- It is very easy to increase the accuracy of ℓ.
- The actual difficulty is in finding a rigorous upper bound \rightsquigarrow (in other words:) prove the actual accuracy of ℓ.

Estimation of the accuracy of ℓ

- Accuracy of ℓ easy to estimate (reliably but not rigorously).

Estimation of the accuracy of ℓ

- Accuracy of ℓ easy to estimate (reliably but not rigorously).
- Let z be an approximate zero, and $z^{\star} \simeq z$ the exact zero. Thus:
$\varepsilon(z)=\varepsilon\left(z^{\star}\right)+\left(z-z^{\star}\right) \varepsilon^{\prime}\left(z^{\star}\right)+\frac{\left(z-z^{\star}\right)^{2}}{2} \varepsilon^{\prime \prime}(\xi)$, where $\xi \simeq z$.

Estimation of the accuracy of ℓ

- Accuracy of ℓ easy to estimate (reliably but not rigorously).
- Let z be an approximate zero, and $z^{\star} \simeq z$ the exact zero. Thus:
$\varepsilon(z)=\varepsilon\left(z^{\star}\right)+\left(z-z^{\star}\right) \varepsilon^{\prime}\left(z^{\star}\right)+\frac{\left(z-z^{\star}\right)^{2}}{2} \varepsilon^{\prime \prime}(\xi)$, where $\xi \simeq z$.

Estimation of the accuracy of ℓ

- Accuracy of ℓ easy to estimate (reliably but not rigorously).
- Let z be an approximate zero, and $z^{\star} \simeq z$ the exact zero. Thus:
$\varepsilon(z)=\varepsilon\left(z^{\star}\right)+\left(z-z^{\star}\right) \varepsilon^{\prime}\left(z^{\star}\right)+\frac{\left(z-z^{\star}\right)^{2}}{2} \varepsilon^{\prime \prime}(\xi)$, where $\xi \simeq z$.
- This leads to the following estimation:

$$
\ell \simeq\|\varepsilon\|_{\infty}+\frac{\left(z-z^{\star}\right)^{2}}{2} \varepsilon^{\prime \prime}(z) .
$$

Estimation of the accuracy of ℓ

- Accuracy of ℓ easy to estimate (reliably but not rigorously).
- Let z be an approximate zero, and $z^{\star} \simeq z$ the exact zero. Thus:
$\varepsilon(z)=\varepsilon\left(z^{\star}\right)+\left(z-z^{\star}\right) \varepsilon^{\prime}\left(z^{\star}\right)+\frac{\left(z-z^{\star}\right)^{2}}{2} \varepsilon^{\prime \prime}(\xi)$, where $\xi \simeq z$.
- This leads to the following estimation:

$$
\ell \simeq\|\varepsilon\|_{\infty}+\frac{\left(z-z^{\star}\right)^{2}}{2} \varepsilon^{\prime \prime}(z) .
$$

- Algorithm computeLowerBound (ε, I, η) returns ℓ such that

$$
\left\{\begin{array}{l}
\ell \leq\|\varepsilon\|_{\infty} \quad \text { rigorously, } \\
\left|\frac{\|\varepsilon\|_{\infty}-\ell}{\ell}\right| \leq \eta \text { with a high level of confidence. }
\end{array}\right.
$$

Our algorithm, absolute error case

- Assumption: procedure findPolyWithGivenError (f, I, δ) computing a polynomial T (with a sufficient degree) such that $\|T-f\|_{\infty} \leq \delta$.

Our algorithm, absolute error case

- Assumption: procedure findPolyWithGivenError (f, I, δ) computing a polynomial T (with a sufficient degree) such that $\|T-f\|_{\infty} \leq \delta$.
- Our algorithm:

```
\ell computeLowerBound(p-f,I, \eta/32);
m
T}\leftarrow\mathrm{ findPolyWithGivenError( }f,I,\delta)\mathrm{ ;
s}\leftarrow\leftarrow\mp@subsup{m}{}{\prime}-(p-T);\quad\mp@subsup{s}{2}{}\leftarrow\mp@subsup{m}{}{\prime}-(T-p)
if showPositivity( }\mp@subsup{s}{1}{\prime},I)\wedge showPositivity( s, I)
then return (\ell,u);
else return }\perp\mathrm{ ;
```


Absolute error case, proof

- Let $\ell \leftarrow$ computeLowerBound $\left(p-f, I, \eta^{\prime}\right)$.

Hence (most likely)

$$
\|p-f\|_{\infty} \leq \ell\left(1+\eta^{\prime}\right)
$$

Absolute error case, proof

- Let $\ell \leftarrow$ computeLowerBound $\left(p-f, I, \eta^{\prime}\right)$.

Hence (most likely)

$$
\|p-f\|_{\infty} \leq \ell\left(1+\eta^{\prime}\right)
$$

- Problem: how can we prove it?

Absolute error case, proof

- Let $\ell \leftarrow$ computeLowerBound $\left(p-f, I, \eta^{\prime}\right)$.

Hence (most likely)

$$
\|p-f\|_{\infty} \leq \ell\left(1+\eta^{\prime}\right)
$$

- Problem: how can we prove it?
- Idea: proving polynomial inequalities is easier.

Absolute error case, proof

- Let $\ell \leftarrow$ computeLowerBound $\left(p-f, I, \eta^{\prime}\right)$.

Hence (most likely)

$$
\|p-f\|_{\infty} \leq \ell\left(1+\eta^{\prime}\right)
$$

- Problem: how can we prove it?
- Idea: proving polynomial inequalities is easier.
- Let $T \leftarrow$ findPolyWithGivenError (f, I, δ). By triangle inequality (most likely)

$$
\begin{equation*}
\|p-T\|_{\infty} \leq \ell\left(1+\eta^{\prime}\right)+\delta \tag{1}
\end{equation*}
$$

Absolute error case, proof

- Let $\ell \leftarrow$ computeLowerBound $\left(p-f, I, \eta^{\prime}\right)$.

Hence (most likely)

$$
\|p-f\|_{\infty} \leq \ell\left(1+\eta^{\prime}\right)
$$

- Problem: how can we prove it?
- Idea: proving polynomial inequalities is easier.
- Let $T \leftarrow$ findPolyWithGivenError (f, I, δ). By triangle inequality (most likely)

$$
\begin{equation*}
\|p-T\|_{\infty} \leq \ell\left(1+\eta^{\prime}\right)+\delta \tag{1}
\end{equation*}
$$

- This inequality can be formally checked.

Absolute error case, proof

- Let $\ell \leftarrow$ computeLowerBound $\left(p-f, I, \eta^{\prime}\right)$.

Hence (most likely)

$$
\|p-f\|_{\infty} \leq \ell\left(1+\eta^{\prime}\right)
$$

- Problem: how can we prove it?
- Idea: proving polynomial inequalities is easier.
- Let $T \leftarrow$ findPolyWithGivenError (f, I, δ). By triangle inequality (rigorously)

$$
\begin{equation*}
\|p-T\|_{\infty} \leq \ell\left(1+\eta^{\prime}\right)+\delta \tag{1}
\end{equation*}
$$

- This inequality can be formally checked.

Absolute error case, proof

- Let $\ell \leftarrow$ computeLowerBound $\left(p-f, I, \eta^{\prime}\right)$.

Hence (most likely)

$$
\|p-f\|_{\infty} \leq \ell\left(1+\eta^{\prime}\right)
$$

- Problem: how can we prove it?
- Idea: proving polynomial inequalities is easier.
- Let $T \leftarrow$ findPolyWithGivenError (f, I, δ). By triangle inequality (rigorously)

$$
\begin{equation*}
\|p-T\|_{\infty} \leq \ell\left(1+\eta^{\prime}\right)+\delta \tag{1}
\end{equation*}
$$

- This inequality can be formally checked. \rightsquigarrow Using Equation (1), we get the rigorous bound:

$$
\begin{aligned}
\|p-f\|_{\infty} & \leq\|p-T\|_{\infty}+\|T-f\|_{\infty} \\
& \leq \ell\left(1+\eta^{\prime}\right)+2 \delta
\end{aligned}
$$

$T \leftarrow$ findPolyWithGivenError (f, l, δ)

$T \leftarrow$ findPolyWithGivenError (f, l, δ)

$T \leftarrow$ findPolyWithGivenError (f, I, δ)
$\delta=\ell \mu$ with $\eta^{\prime}+2 \mu \leq \eta$

Our algorithm: absolute error case

$\ell \leftarrow$ computeLowerBound $(p-f, I, \eta / 32)$;
$m^{\prime} \leftarrow \ell(1+\eta / 2) ; \quad u \leftarrow \ell(1+31 \eta / 32) ; \quad \delta \leftarrow 15 \ell \eta / 32 ;$
$T \leftarrow$ findPolyWithGivenError (f, I, δ);
$s_{1} \leftarrow m^{\prime}-(p-T) ; \quad s_{2} \leftarrow m^{\prime}-(T-p) ;$
if showPositivity $\left(s_{1}, I\right) \wedge$ showPositivity $\left(s_{2}, I\right)$
then return (ℓ, u);
else return \perp;

Cases of failure of the algorithm

- The algorithm may fail:
- One does not achieve to find T such that $\|f-T\|_{\infty} \leq \delta$.
- The estimated accuracy of ℓ was wrong.

Cases of failure of the algorithm

- The algorithm may fail:
- One does not achieve to find T such that $\|f-T\|_{\infty} \leq \delta$.
- The estimated accuracy of ℓ was wrong.
- Important point: the algorithm never lies.

Cases of failure of the algorithm

- The algorithm may fail:
- One does not achieve to find T such that $\|f-T\|_{\infty} \leq \delta$.
- The estimated accuracy of ℓ was wrong.
- Important point: the algorithm never lies.
- Failure cases were never encountered in practice.

Cases of failure of the algorithm

- The algorithm may fail:
- One does not achieve to find T such that $\|f-T\|_{\infty} \leq \delta$.
- The estimated accuracy of ℓ was wrong.
- Important point: the algorithm never lies.
- Failure cases were never encountered in practice.
- Possible solutions in case of failure:
- Cut the interval into sub-intervals.
- Call computeLowerBound with a smaller parameter (e.g. $\eta / 1024$).

Proving the supremum norm of a polynomial

- Absolute error: $\|p-T\|_{\infty} \leq m^{\prime}$ if and only if

$$
\forall x \in I,\left\{\begin{array}{l}
m^{\prime}-p(x)+T(x) \geq 0 \\
m^{\prime}+p(x)-T(x) \geq 0
\end{array}\right.
$$

Proving the supremum norm of a polynomial

- Absolute error: $\|p-T\|_{\infty} \leq m^{\prime}$ if and only if

$$
\forall x \in I,\left\{\begin{array}{l}
m^{\prime}-p(x)+T(x) \geq 0 \\
m^{\prime}+p(x)-T(x) \geq 0
\end{array}\right.
$$

- Relative error: $\|p / T-1\|_{\infty} \leq m^{\prime}$ if and only if

$$
\forall x \in I,\left\{\begin{array}{l}
m^{\prime}|T(x)|-p(x)+T(x) \geq 0 \\
m^{\prime}|T(x)|+p(x)-T(x) \geq 0 .
\end{array}\right.
$$

Proving the supremum norm of a polynomial

- Absolute error: $\|p-T\|_{\infty} \leq m^{\prime}$ if and only if

$$
\forall x \in I,\left\{\begin{array}{l}
m^{\prime}-p(x)+T(x) \geq 0 \\
m^{\prime}+p(x)-T(x) \geq 0
\end{array}\right.
$$

- Relative error: $\|p / T-1\|_{\infty} \leq m^{\prime}$ if and only if

$$
\forall x \in I,\left\{\begin{array}{l}
m^{\prime}|T(x)|-p(x)+T(x) \geq 0 \\
m^{\prime}|T(x)|+p(x)-T(x) \geq 0 .
\end{array}\right.
$$

- Moreover the core of the algorithm proves that

$$
\forall x \in I, \quad(|f(x)| \geq F \quad \text { and } \quad|f(x)-T(x)| \leq \delta \leq F)
$$

Hence, T has a constant sign over I.

Proving the supremum norm of a polynomial

- Absolute error: $\|p-T\|_{\infty} \leq m^{\prime}$ if and only if

$$
\forall x \in I,\left\{\begin{array}{l}
m^{\prime}-p(x)+T(x) \geq 0 \\
m^{\prime}+p(x)-T(x) \geq 0
\end{array}\right.
$$

- Relative error: $\|p / T-1\|_{\infty} \leq m^{\prime}$ if and only if

$$
\forall x \in I,\left\{\begin{array}{l}
m^{\prime}|T(x)|-p(x)+T(x) \geq 0 \\
m^{\prime}|T(x)|+p(x)-T(x) \geq 0 .
\end{array}\right.
$$

- Moreover the core of the algorithm proves that

$$
\forall x \in I, \quad(|f(x)| \geq F \quad \text { and } \quad|f(x)-T(x)| \leq \delta \leq F)
$$

Hence, T has a constant sign over I.

- In any case, proving the supremum norm of a polynomial is equivalent to proving polynomial inequalities.

Proving a polynomial inequality

In order to prove that $\forall x \in[a, b], q(x)>0$ where q is a polynomial:

- (Recursively) study the variations of q.

Proving a polynomial inequality

In order to prove that $\forall x \in[a, b], q(x)>0$ where q is a polynomial:

- (Recursively) study the variations of q.
- Rigorously count the real roots of q inside $[a, b]$: \rightsquigarrow Descartes rule of signs, Sturm sequence, etc.

Proving a polynomial inequality

In order to prove that $\forall x \in[a, b], q(x)>0$ where q is a polynomial:

- (Recursively) study the variations of q.
- Rigorously count the real roots of q inside $[a, b]$: \leadsto Descartes rule of signs, Sturm sequence, etc.
- Sum-of-squares technique: rewrite q as

$$
q(x)=\sum_{i=1}^{k}(x-a)^{\alpha_{i}}(b-x)^{\beta_{i}} s_{i}(x)^{2},
$$

where the s_{i} are polynomials.

Proving a polynomial inequality

In order to prove that $\forall x \in[a, b], q(x)>0$ where q is a polynomial:

- (Recursively) study the variations of q.
- Rigorously count the real roots of q inside $[a, b]$: \rightsquigarrow Descartes rule of signs, Sturm sequence, etc.
- Sum-of-squares technique: rewrite q as

$$
q(x)=\sum_{i=1}^{k}(x-a)^{\alpha_{i}}(b-x)^{\beta_{i}} s_{i}(x)^{2},
$$

where the s_{i} are polynomials.

- Found by an efficient, possibly heuristic, algorithm.
- Once found: there just remains a polynomial equality to prove.
- Particularly interesting for a formal proof.

Computing a rigorous polynomial approximation

- Goal: implement findPolyWithGivenError (f, I, δ). \rightsquigarrow returning a polynomial T such that $\|T-f\|_{\infty} \leq \delta$.

Computing a rigorous polynomial approximation

- Goal: implement findPolyWithGivenError (f, I, δ). \rightsquigarrow returning a polynomial T such that $\|T-f\|_{\infty} \leq \delta$.
- In practice: write a procedure findPoly (f, I, n)
\rightsquigarrow returning (T, Δ) with $\operatorname{deg}(T)=n$ and $\|T-f\|_{\infty} \leq \Delta$.

Computing a rigorous polynomial approximation

- Goal: implement findPolyWithGivenError (f, I, δ). \rightsquigarrow returning a polynomial T such that $\|T-f\|_{\infty} \leq \delta$.
- In practice: write a procedure findPoly (f, I, n) \rightsquigarrow returning (T, Δ) with $\operatorname{deg}(T)=n$ and $\|T-f\|_{\infty} \leq \Delta$.
- findPolyWithGivenError obtained from findPoly by a simple bisection over n.

Computing a rigorous polynomial approximation

- Goal: implement findPolyWithGivenError (f, I, δ). \rightsquigarrow returning a polynomial T such that $\|T-f\|_{\infty} \leq \delta$.
- In practice: write a procedure findPoly (f, I, n) \rightsquigarrow returning (T, Δ) with $\operatorname{deg}(T)=n$ and $\|T-f\|_{\infty} \leq \Delta$.
- findPolyWithGivenError obtained from findPoly by a simple bisection over n.
- This strategy may not terminate \rightsquigarrow case of failure of the algorithm.

Taylor Models

- Popular implementation of findPoly(f,I, n): Taylor Models.
- Taylor Model of degree n of f over I: $(T, \boldsymbol{\Delta})$ such that
(1) T is an approximate Taylor polynomial of f.
(2) $\forall x \in I, f(x)-T(x) \in \boldsymbol{\Delta}$.

Taylor Models

- Popular implementation of findPoly(f, I, n): Taylor Models.
- Taylor Model of degree n of f over I: $(T, \boldsymbol{\Delta})$ such that
(1) T is an approximate Taylor polynomial of f.
(2) $\forall x \in I, f(x)-T(x) \in \boldsymbol{\Delta}$.
- A Taylor Model representing any function f given by an expression can be computed by means of composition rules.

Taylor Models

- Popular implementation of findPoly(f, I, n): Taylor Models.
- Taylor Model of degree n of f over I: $(T, \boldsymbol{\Delta})$ such that
(1) T is an approximate Taylor polynomial of f.
(2) $\forall x \in I, f(x)-T(x) \in \boldsymbol{\Delta}$.
- A Taylor Model representing any function f given by an expression can be computed by means of composition rules.
- Problem: the information about the zeros is lost.

Taylor Models

- Popular implementation of findPoly(f, I, n): Taylor Models.
- Taylor Model of degree n of f over I: $(T, \boldsymbol{\Delta})$ such that
(1) T is an approximate Taylor polynomial of f.
(2) $\forall x \in I, f(x)-T(x) \in \boldsymbol{\Delta}$.
- A Taylor Model representing any function f given by an expression can be computed by means of composition rules.
- Problem: the information about the zeros is lost.
$\rightsquigarrow \frac{\left(x-\frac{x^{2}}{2},[-7 e-3,7 \mathrm{e}-3]\right)}{\left(x+\frac{x^{2}}{2},[-3 \mathrm{e}-3,3 \mathrm{e}-3]\right)}$ leads to an infinite remainder... \ldots though it represents $\sin (x) /(\exp (x)-1)$ (perfectly defined by continuity).

Modified Taylor Models

- Develop f at one of its zeros z :

$$
f(x)=0+a_{1}(x-z)+\cdots+a_{n}(x-z)^{n}+\mathcal{O}(x-z)^{n+1}
$$

\rightsquigarrow the information $f(z)=0$ is readable in the development.

Modified Taylor Models

- Develop f at one of its zeros z :

$$
f(x)=0+a_{1}(x-z)+\cdots+a_{n}(x-z)^{n}+\mathcal{O}(x-z)^{n+1}
$$

\rightsquigarrow the information $f(z)=0$ is readable in the development.

- Idea: represent the coefficients of T with small intervals enclosing the actual value.
\rightsquigarrow If some coefficient is $[0,0]$, it must be exactly 0 .
- Moreover, keep $(x-z)^{n+1}$ factored out in the remainder.

Modified Taylor Models

- Develop f at one of its zeros z :

$$
f(x)=0+a_{1}(x-z)+\cdots+a_{n}(x-z)^{n}+\mathcal{O}(x-z)^{n+1}
$$

\rightsquigarrow the information $f(z)=0$ is readable in the development.

- Idea: represent the coefficients of T with small intervals enclosing the actual value.
\rightsquigarrow If some coefficient is $[0,0]$, it must be exactly 0 .
- Moreover, keep $(x-z)^{n+1}$ factored out in the remainder.

Modified Taylor Models
A modified Taylor Model of f over I, developed at x_{0} is $(T, \boldsymbol{\Delta})$ where:
(1) T has (narrow) interval coefficients.
(2) $\forall x \in I, \exists \delta \in \boldsymbol{\Delta}, \quad f(x)-T\left(x-x_{0}\right)=\left(x-x_{0}\right)^{n} \delta$

Sollya: Computing and bounding the maximum error

```
> f = exp(x); /* Define the function */
> dom = [-1/4;1/4]; /* Define the domain */
> n = 5; /* Set degree n to 5 */
> p = remez(1, n , dom, 1/f); /* Remez polynomial */
> err = p/f - 1; /* Define the rel. error */
> /* Compute supremum norm to get max. error */
> errmax = supnorm(p, f, dom, relative, 2^(-10));
> errmax;
[1.0576...e-8; 1.0586...e-8]
> superrmax = sup(errmax);
> log2(superrmax);
-2.649...e1
```


Outline

(7) Conclusion

- Conclusion
- Perspectives
- References

What We Showed Today

How to implement a mathematical function

- that is efficient and rather accurate,

What We Showed Today

How to implement a mathematical function

- that is efficient and rather accurate,
- with an argument reduction and a polynomial approximation found by Sollya,

What We Showed Today

How to implement a mathematical function

- that is efficient and rather accurate,
- with an argument reduction and a polynomial approximation found by Sollya,
- with global error bounds verified by Gappa.

What We Did Not Show Today

For lack of time

How to implement a mathematical function

- that achieves correct rounding (cf table-maker dilemma),

What We Did Not Show Today

For lack of time

How to implement a mathematical function

- that achieves correct rounding ($c f$ table-maker dilemma),
- that uses floating-point expansions,

What We Did Not Show Today

For lack of time

How to implement a mathematical function

- that achieves correct rounding (cf table-maker dilemma),
- that uses floating-point expansions,
- that is based on converging algorithms (e.g. Newton),

What We Did Not Show Today

For lack of time

How to implement a mathematical function

- that achieves correct rounding (cf table-maker dilemma),
- that uses floating-point expansions,
- that is based on converging algorithms (e.g. Newton),
- that is guaranteed not to have unsafe executions (e.g. arithmetic overflow, out-of-bound array access),

What We Did Not Show Today

For lack of time

How to implement a mathematical function

- that achieves correct rounding (cf table-maker dilemma),
- that uses floating-point expansions,
- that is based on converging algorithms (e.g. Newton),
- that is guaranteed not to have unsafe executions (e.g. arithmetic overflow, out-of-bound array access),
- that is formally proved to be correct.

What We Could Not Have Shown Today

Even if we had wanted to

How to implement a mathematical function

- for an arbitrary accuracy,

What We Could Not Have Shown Today

Even if we had wanted to

How to implement a mathematical function

- for an arbitrary accuracy,
- with a bound on the average error.

What the Future Holds

- Automated generators of verified implementations.

What the Future Holds

- Automated generators of verified implementations.
- Function implementpoly in Sollya.

What the Future Holds

- Automated generators of verified implementations.
- Function implementpoly in Sollya.
- Project Metalibm.

What the Future Holds

- Automated generators of verified implementations.
- Function implementpoly in Sollya.
- Project Metalibm.
- Floating-point functions verified directly on their C code.

Annotated Newton Algorithm for Square Root

```
/*@ requires 0.5 <= x <= 2;
    @ ensures \abs(\result - 1/\sqrt(x)) <= 0x1p-6 * \abs(1/\sqrt(x)); */
double sqrt_init(double x);
/*@ lemma quadratic_newton: \forall real x, t; x > 0 ==>
            \let err = (t - 1 / \sqrt(x)) / (1 / \sqrt(x));
            (0.5*t * (3-t * t * x) - 1/ \sqrt(x)) / (1 / \sqrt(x)) ==
            -(1.5 + 0.5 * err) * (err * err); */
/*@ requires 0.5 <= x <= 2;
    @ ensures \abs(\result - \sqrt(x)) <= 0x1p-43 * \abs(\sqrt(x)); */
double sqrt(double x)
{
    int i;
    double t, u;
    t = sqrt_init(x);
    /*@ loop pragma UNROLL 4;
        @ loop invariant 0 <= i <= 3; */
    for (i = 0; i <= 2; ++i) {
        u}=0.5* t * (3-t * t * x); 
        //@ assert \abs(u - 0.5 * t * (3 - t * t * x)) <= 1;
        /*@ assert \let err = (t - 1 / \sqrt(x)) / (1 / \sqrt(x));
                    (0.5 * t * (3-t * t * x) - 1/ \sqrt(x)) / (1 / \sqrt(x)) ==
                    - (1.5 + 0.5 * err) * (err * err); */
        //@ assert \abs(u - 1/\sqrt(x)) <= 0x1p-10 * \abs(1 / \sqrt(x));
        t = u;
    }
    //@ assert x * (1 / \sqrt(x)) == \sqrt(x);
    return x * t;
}
```


References

- Muller, Elementary Functions, Algorithms and Implementation, Birkhäuser, 2nd ed., 2006.
- de Dinechin, CL, Muller, Fast and correctly rounded logarithms in double-precision, RAIRO, vol. 41, 85-102, 2007.
- Muller et al., Handbook of Floating-Point Arithmetic, Birkhäuser, 2009.
- Boldo, Filliâtre, GM, Combining Coq and Gappa for certifying floating-point programs, Proceedings of Calculemus 16, 59-74, Grand Bend, CA-ON, 2009.
- Daumas, GM, Certification of bounds on expressions involving rounded operators, ACM TOMS, vol. 37 (1), 1-20, 2010.
- Chevillard, Joldeș, CL, Sollya: an environment for the development of numerical codes, in Proceedings of ICMS'10, 28-31, Kobe, Japan, 2010.
- de Dinechin, CL, GM, Certifying the floating-point implementation of an elementary function using Gappa, IEEE TOC, vol. 60 (2), 242-253, 2011.
- Chevillard, Harrison, Joldeș, CL, Efficient and accurate computation of upper bounds of approximation errors, TCS, vol. 412 (16), 1523-1543, 2011.

