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Introduction

At the time these lines are written, the world’s largest computer in terms of processing
power is the Summit computer 1. It provides a peak Linpack performance of 200.795 petaflops,
meaning that it is able to execute 200795000000000000 Floating-Point operations per second.

This is certainly an impressive number and it would be easy to announce other impressive
“performance” numbers of this kind: numbers of all floating-point operations executed by all
supercomputers in the world, all computers of all kinds, including Internet-Of-Thing devices
and so on.

However, impressing numbers do not tell the whole story. We should ask ourselves:
what is the value in the results computed with all these operations? Is there any human
being able to verify the correctness of these computations? We would hope that all these
operations do serve a purpose and end up computing meaningful results. However, are
they all necessary? Or are there parts of the different algorithms that yield to results that get
immediately overwhelmed by other terms?

In a couple of words, Floating-point numbers are the Computer Science view of what
engineers call scientific notation for a real number: quantities are expressed as an order of
magnitude, given as an exponent of a fixed base power, and a significand term that contains
the first decimals of the quantity right to the decimal point. For example, huge quantities such
as Avogadro’s constant will be expressed with larger powers, 6.02214086 · 1023 for instance.
Tiny quantities, such as the charge of an electron, will have the same number of decimals
in their significand – the same precision – but will be expressed with a negative exponent,
1.60217662 · 10−19 for the example of an electron’s charge.

Computing with Floating-point numbers is intrinsically inexact: a computer’s memory is
finite, so only a finite number of decimals in the significand may be maintained. This requires
rounding; for example, in decimal, the result of the operation divide 1.0 by 3.0 will not yield
exactly one third but some approximated number like 10−1 · 3.33333333. In general, floating-
point numbers are hence approximations to unknown mathematical quantities, affected by
errors.

The Summit supercomputer executes roughly 200 · 1015 floating-point operations per
second. An overwhelming majority of these operations will provoke a rounding error. All
errors combine, in ways that may be easy or hard to analyze, and finally affect the results. So
is there any hope to prove correctness for the algorithms run on these computers?

There is hope but things aren’t simple. Floating-point arithmetic is mainly defined by the
IEEE754 Standard on Floating-Point Arithmetic [117]. This standard, first published in 1985
for the so-called microcomputers of that time, is now commonly accepted and supported on
a wide range of systems. It has been the first standard to precisely define what the expected

1. https://www.top500.org/green500/lists/2018/11/ retrieved 2019-02-25

https://www.top500.org/green500/lists/2018/11/


2 Introduction

results for a certain set of well-defined floating-point operation are and it has enabled proofs
on floating-point programs [197]. For instance, the standard requires the result of the division
example above – divide 1.0 by 3.0 – to be correctly rounded, i.e. rounded as if the result were
computed infinitely precisely and then rounded to a floating-point number.

However, we do think that even if the IEEE754 Standard has been a major breakthrough
towards reliable arithmetic and computing in general, in a world striving for exaflop com-
puting, it has become too fine-grained and almost not wide enough in scope. The IEEE754
Standard defines single operations, such as addition between two floating-point numbers,
whence induces a bottom-up approach: more complex algorithms are to be built from simpler
bricks. Algorithms are first written, then analyzed for their resulting accuracy. In an exaflop
world, a top-down approach, where algorithms are generated to just the right accuracy, might
be more appropriate. We think we should conceive a modern floating-point environment
that is firmly based on IEEE754 but that extends it where needed to allow for this top-down
approach to high level operations, a priori accuracy specifications and currently uncommon
mixtures of numbers in floating-point and fixed-point formats and radices of several kinds.

This manuscript is dedicated to shedding some light on research done in the recent year
to cover these aspects. We started by asking ourselves whether the support for IEEE754 was
actually complete on classical platforms, such as Linux. We found that certain parts were still
missing, in particular with respect to the 2008 version of IEEE754, which had added quite a
few operations to the standard. We tried to find algorithms that allow for easy implementation
of so-called heterogeneous operations and went on to look into correct rounding of arbitrary-
length decimal string to binary floating-point operations. This first binary-decimal mixed
radix experience paved the way to a new challenge: providing mixed-radix operations in
an IEEE754 extension. We found ways to realize mixed-radix comparisons but we have to
admit that our research on a mixed-radix fused-multiply-and-add proved to be harder than
we thought.

In parallel, we worked into other directions of IEEE754 extension: extending precision
and high-level operations. Working at extending compute precision in a classical IEEE754-
compatible manner is reasonable only up to a certain precision point: when precision attains
some threshold, existing multiple-precision library provide state-of-the-art solutions with
near-optimal complexities. However, there is a certain range just between hardware-covered
IEEE754 double precision and software-emulated multiple-precision where significant perfor-
mance improvements are possible.

With respect to high-level operations, we chose to work on the case of Euclidian norms of
arbitrary length vectors. Such operations may seem challenging from a precision perspective
in their summation step. We found that this is actually not the case and that performance
improvements with a speed-up of up to 4.5 times with respect to existing solutions may be
obtained – while improving accuracy significantly.

These parts of our research follow a pretty classical way of designing floating-point
algorithms: it is the human who performs all the necessary steps of accuracy estimation,
precision adaptation, hence proving in an a posteriori way the correctness of the algorithms
for the proposed high-level operations.

This work can be extremely tedious as the part of repetitive accuracy estimate calculations
with respect to the creativity part can be pretty high. Humans are the only ones to be creative.
Computers are the best at performing repetitive parts.

The implementation of mathematical –mostly elementary– functions, such as exp, sin, cos,
is a good example for codes where a lot of the implementation steps are mechanical, tedious
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work. It is, hence, reasonable to no longer write theses codes by hand but to try to utilize
computers to generate these codes. We worked on this subject during the Metalibm project
funded by ANR 2. We are now able to generate implementations of univariate functions
for accuracies in the range from a couple to about 120 correct bits. The functions to be
implemented can be given as expression trees or in the form of differential equations of a
certain kind. Almost all generation steps are fully automated, providing a turn-key solution
for the user. We provide a meta-level extension to the classical IEEE754 floating-point
environment: the user can freely generate implementations for operations they do not find
covered by the standard.

The detailed work on this automatic toolchain for the generation of codes for mathematical
functions let us understand that there is another arithmetical object that seems completely
different from mathematical functions when first compared but that shares a lot of similarities
in terms of implementation steps: Linear Time Invariant (LTI) digital filters. Such filters are
used in a wide range of applications, ranging from signal processing in telecommunications
to controllers for machinery. A toolchain able to implement a digital filter, starting from a
frequency response specification and ending up with code in floating-point or, more com-
monly, fixed-point arithmetic goes through essentially the same steps as the mathematical
function code generator: polynomial or rational approximation, coefficient truncation, choice
of evaluation scheme and final implementation with precision adaptation.

We hence worked at porting our toolchain from mathematical functions to digital filters.
This work required us to find ways to compute certain measures, for instance the so called
Worst Case Peak Gain norm, rigorously and with arbitrary accuracy. This opened another field
of activity enhancing the classical IEEE754 arithmetic environment: in contrast to IEEE754
arithmetic, where algorithms suffer rounding effects and accuracy results are mostly an a
posteriori measure, we strive at providing multiprecision high-level operations that achieve
a priori error control.

These basic bricks can then be easily exploited to solve other arithmetical problems.
With other words, we have a two-level approach, where a priori error-controlled arithmetic
becomes a convenience to then design reliable arithmetic operations in a second step.

This document is organized with respect to the different fields of work we have been
involved in:

— Chapter 1 contains a brief summary of our academic work done since our Ph.D. thesis
in 2008. We give a summary of our publications since that moment. We also provide
a list of our publications in international journals and in international, peer reviewed
conferences.

— Chapter 2 is a short introduction to floating-point arithmetic and, in particular, the
floating-point environment provided by the IEEE754 standard. In this Chapter, we will
give an overview of the changes that took place at the 2008 revision of the standard and
look into issues with non-standard exception handling.

— In Chapter 3, we present our research done on enhancing the IEEE754 floating-point
environment. We shall look into the implementation of heterogeneous operations,
correctly rounded arbitrary length decimal string conversions to binary, mixed-radix
conversions and further mixed-radix operations in general, medium-range extended
precision floating-point operations and, finally, our Euclidian norm algorithm.

2. Agence Nationale pour la Recherche - French Research Fund
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— Chapter 4 is dedicated to our core work on code generation for mathematical functions.
We will start with an overview on elementary function implementation, including
argument reduction techniques, optimized domain splitting and reconstruction. We
will then look at open-ended ways to implement functions which are less well-known
and for which no reference code is available. We will finish this Chapter by highlighting
other possible use-cases for mathematical function code generation and digital filter
tool-chain similarities.

— Chapter 5 covers a priori error control in multiprecision floating-point arithmetic.
These reliable floating-point arithmetic approaches allow, in a second step, for reliable
implementation of fixed-point arithmetic-based algorithms.

— We shall give a concluding overview of where we stand in our research in Chapter 6.
We shall then try to give an outlook into what fields of research we would like to direct
our interest in the short, medium and long-term range.



CHAPTER 1
Research Summary

Jupiter omnipotens, audacibus annue coeptis.

Virgil, Aeneid

The main objective of our academic research, done since our Ph.D. defense in 2008, is the
enhancement of the classical floating-point environment, in different ways and through vari-
ous means. In this Chapter, we would like to present this work succinctly, before describing it
with more detail in the technical Chapters below.

We tend to divide our work into three topics, even though connections surely exist:

— For the first topic, we are concerned with software to support the IEEE754-2008 Stan-
dard, implementing all enhancements the 2008 revision brought to the Standard using
existing IEEE754-1985 operations or using integer arithmetic and bit manipulation.
The heterogeneous operations, taking, for instance, double precision arguments and
returning single precision results with one single rounding are an example of such
enhancements of the 2008 version of IEEE754.
Starting from there, we further invest into designing floating-point operations that are
still based on the IEEE754 floating-point formats –for input or output– but not foreseen
in the Standard as such. For example, we have worked on mixed-radix floating-point
comparisons that allow decimal and binary floating-point types to be compared without
any intermediate rounding.
Finally, for this topic, we have looked into enhancing the floating-point environment
through extended precision floating-point arithmetic formats and faithfully rounded
high-level operations, such as a faithfully rounded 2-norms of vectors of arbitrary
length.
This first research axis is summarized below in Section 1.1.

— The second topic deals with the generation of floating-point code, using software instead
of writing, testing and proving the code manually.
We launched research on numerical software –the code generator– that produces other
numerical software –the generated code– at the example of mathematical, mostly
elementary functions, such as exp, sin, atan. We contributed several research papers
concerned with the different steps required to be automatized in the implementation of
a mathematical function: polynomial approximation, argument reduction through the
exploitation of algebraic properties of the function where possible, domain splitting,
argument reconstruction and, most importantly, automatized error analysis.
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We looked in particular into the case when the function to be implemented is given
without a way to evaluate it. For instance, for the function defined as 𝑓(𝑥) = 𝑒𝑥 + 17,
simple expression tree evaluation and usage of an existing implementation of the
exponential suffices. For functions defined by differential equations, for example with
𝑓 ′′(𝑥)− 2𝑥𝑓 ′(𝑥) = 0, 𝑓(0) = 0, 𝑓 ′(0) = 2/

√
𝜋, no such easy scheme exists. We worked

in cooperation with other researchers to make code generation possible in this case, too.
Our work on this topic of code generation brought us the understanding that code
generation for digital Linear Time Invariant filters is surprisingly similar. For instance,
the classical Remez algorithm used for approximation of a function by a polynomial has
a filter formulation, called Parks-McClellan algorithm [205]. We started investigating
toward which extent reuse of algorithmic techniques for code generation and even
software reuse is possible.
This second topic is succinctly described in Section 1.2.

— Starting from the observation that code generation for mathematical functions and
filters is similar but that the state of the art was more advanced for functions, we looked
into the basic bricks required for reliable and automatic design and code generation for
filters. In this third research topic, we discovered that rigor in implementation of digital
filters mainly stems from rigor in the arithmetic used for the analysis of the numerical
object that represents the filter.
In our approach, we use a multi-step approach where we first implement software for
the analysis of filters in a way that this code guarantees that its error reliably stays within
error bounds which are set in an a priori manner. This is achieved with multiprecision
floating-point and interval arithmetic through dynamic precision adaptation. Given a
priori -safe measures, we can then reliably determine the scales used in the fixed-point
code used to implement the filter.
This third research topic is summarized in Section 1.3.

At the end of this Chapter, in Section 1.5, we give a comprehensive list of our publications
which we have published since our Ph.D. defense, namely the following work: [27, 28, 32,
40, 41, 64, 66, 98–101, 125, 130, 146–150, 156–159, 161–163, 251–254]. We shall shortly describe
them in the following three Sections 1.1 through 1.3 as we see fit. The reader interested in
a complete list of all our publications, including those ones we published before our Ph.D.
defense may refer to the list we give at the end of this manuscript, on page 229.

1.1 Advanced operations for the IEEE754 Environment

In [161], we first gave an overview of the challenges in providing complete support
for the IEEE754-2008 Standard, in both single and double precision. We evaluated that the
introduction of new operations in the 2008 version of the Standard provoked an increase of the
number of operations to be supported for these two formats from about 70 operations in the
1985 version to over 350 operations, which is equivalent to a five-fold increase. In the article,
we presented a library, which we called libieee754, intended to provide open-source
software support for IEEE754-2008. We grouped the operations to be provided into groups:
the first one consisted of those operations that directly map to IEEE754-1985 operations, the
second one consisted of the operations for which emulation sequences with existing IEEE754-
1985 operations could be found. This group included the IEEE754-2008 heterogeneous
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operations, which take arguments in one, larger precision and return a result rounded once to
another, lower precision. A third and final group consisted of all higher-level floating-point
operations mandated by the IEEE754-2008 Standard that required the use of integer-based
emulation to achieve the mandated floating-point behavior. For example, we presented
an integer-based algorithm to read in arbitrary length decimal string sequences and to
round them once to an IEEE754-2008 binary format. The novelty of this algorithm is that it
works within a fixed, known memory space, although it provides correct rounding for input
sequences of any length, even for those sequences that require more space than that fixed
amount of memory.

Reconsidering our sequences to implement the heterogeneous IEEE754-2008 operations
which we had designed using classical properties of floating-point arithmetic, such as Ster-
benz’ lemma, we discovered that they were both special cases and extensions to another
classical floating-point sequence, called Ziv’s rounding test. As the literature on Ziv’s round-
ing test left out certain aspects, such as the tight but reliable computation of a certain constant,
called the Ziv rounding constant, we revisited Ziv’s rounding test in a broader article [66]. In
that article, we detail the computation of a tight and rigorous Ziv rounding constant and detail
how Ziv’s rounding test can be used to implement correctly rounded elementary functions as
well as heterogeneous operations. It is worth remarking that the resulting algorithm for the
heterogeneous operations is uncommon as it is fully agnostic to the rounding mode. When
run in round-to-nearest, it performs Ziv’s rounding test and deduces the rounding mid-point,
i.e. the decisive point where the rounding changes, from two intermediate results of Ziv’s
test, hence finishes by providing the result, correctly rounded once to nearest. When run in a
directed rounding mode, Ziv’s rounding test is not correct in principle: it always answers
“correct” and does no longer allow for any distinction. However, in our application, which
are the heterogeneous operations, this behavior is exactly the one we need: in the directed
rounding modes, the heterogeneous operations are naturally correct.

The conversion from decimal to binary and vice-versa, as it is frequently needed for input
and output conversion, requires integer powers of 5 to be computed fast, accurately and often
with very little memory spent, e.g. on tables. In [150], we investigated algorithms to compute
such powers to any accuracy quickly, using small and exact tables to speed up the process.

Our work on decimal string sequence conversion to binary led us to an investigation that
enhances the classical IEEE754-2008 environment through providing exact comparisons be-
tween binary and decimal IEEE754-2008 formats. Under an exact comparison we understand
that it always returns the true mathematical result, not the result obtained when converting
–with a rounding– one of the operands to the radix of the operand and then comparing.
We published this work for a special case in [27] and then for all possible combinations of
IEEE754-2008 formats and comparisons (less, greater, less-or-equal, greater-or-equal, equal
etc.) in [28]. There are two keys to implementing fast and correct exact comparisons: first,
precomputation of the operands in the given binary and decimal formats that are closest one
to another while not being equal. This search of the hardest input is classically known but
slightly complicated as floating-point numbers in the decimal formats may admit non-unique
representation, as decimal floating-point arithmetic does not always normalize the floating-
point numbers. Second, a very tight error analysis of the fixed-point code used to implement
the comparisons, bundled with an approach using two tables computed such that the error
partially cancels out.

This work on mixed-radix comparisons led us to an investigation whether general, compu-
tation mixed-radix operations could be proposed to enhance the IEEE754-2008 environment.
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We considered a mixed-radix Fused-Multiply-And-Add (FMA) operation, where each of
the inputs and the output could be one of the IEEE754-2008 formats binary64 or decimal64.
We intended this FMA to be correctly rounded once, as if no intermediate radix-conversion
took place resp. were performed with infinite precision. Similarly to the case of our exact
mixed-radix comparisons, we tried to perform a search for the inputs that would lead to the
largest amount of precision loss in an actual implementation. The results of this search would
hence allow an implementation to be tailored to the right intermediate compute precision.
Together with the Ph.D. student Olga Kupriianova, whom we advised, we spent some large
amount of time on this problem, and could only partly find solutions. The dire results of
this work ended up being published in Olga’s thesis [145]. We are going to sketch another
solution to implementing a mixed-radix FMA in Chapter 3, Section 3.4.3 of this work.

Our experiments with operations that enhance IEEE754-2008 put us in a constant need
of higher precision floating-point formats, in particular in the range between 64 to 512
bits of precision. As a matter of course, the MPFR library 1 [86] can be used for multiple
precision, even in this middle-end precision range. However, MPFR is, or at least used
to be, pretty inefficient in the range up to a couple of hundred of bits. It is designed to
obtain best asymptotic complexity values for even higher precisions. In addition, MPFR
requires the system it is run on to provided access to dynamic memory allocation. For some
applications, this is not acceptable, in particular when the memory subsystem is slow or when
the maximum memory consumption needs to be known statically. In [156], we proposed
a library intended to address both these issues. Our library has statically known memory
consumption, all memory required is held on the stack, and it is particularly optimized
for the precision range from 64 to 512 bits. It provides formats for precisions from 64 to
512 bits in steps of 32 bits, and fully supports all combinations of formats, even when the
combination results in heterogeneous input and output precisions. It supports all five basic
operations (+,−,×, /,√ ), FMA, all possible comparisons and the conversions between all
supported formats, as well to and from IEEE754-2008 single and double precision. It is fully
implemented in a way that enables modern compilers to perform constant propagation and
dead code elimination. Overall we provided on over 1300 functions, partly implementing
them through code generation techniques.

With the different previous contributions, we tried to enhance the IEEE754 environment
with additional operations that work IEEE754-2008 floating-point inputs –or extended pre-
cision formats closely matching IEEE754-2008 formats– but that are not proposed in the
Standard as such. All these operations followed the IEEE754 Standard with respect to round-
ing: they are all supposed to provide their results as if infinite intermediate precision were
used. This approach enhances IEEE754 but it might be considered too fine grained: users
might not need additional operations working on a small number of arguments. There might
rather be a need for high-order operations, and without actually requiring correct rounding.
We investigated into this direction and came up with a novel algorithm to compute 2-norms
(Euclidian norms) of arbitrary length vectors of floating-point numbers of some IEEE754
format. We presented this work in [101]. Our algorithm provides a faithfully rounded result,
is free of spurious underflow or overflow and can be parallelized extremely easily, while
maintaining these latter guarantees on its output. As it avoids expensive operations such
as floating-point divisions and complex, unpredictable branching, its implementation runs
about 4.5 faster than the previous, reference algorithm. The error analysis we performed for

1. http://www.mpfr.org/

http://www.mpfr.org/
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the proposed algorithm made exhibit slightly improved bounds for certain cases of doubled-
precision compensated addition and, in particular, better bounds on the admissible error on
an argument to a floating-point square root such that the square root’s result is a faithful
rounding of the respective mathematically exact quantity.

We describe the research topics summarized in this Section in more detail in Chapter 3.
We shall add that we also worked on some miscellaneous other floating-point environ-

ment topics which we refrain from describing in this thesis. This includes work on rounding
mode access [162], recent work on multiple-precision decimal floating-point and interval arith-
metic [99, 100] and also work on extending Fused-Multiply-And-Add to correctly rounded
2D scalar products [158].

1.2 Floating-Point Code Generation

Our work on floating-point code generation for mathematical functions first required
research on some basic algorithmic bricks, in particular concerning the a posteriori validation
of code implementing the function, once the generation process is finished. We had started
this type of basis work just after our Ph.D. defense and we could publish three articles,
essential to our further research, with [64] and then [40, 41]. In an implementation of a
mathematical function, there are two sources of error: the roundoff error and the truncation
error. With [64], we addressed validation from a roundoff error perspective, while with [40,41],
we got concerned with the truncation error part.

Based on this ground-laying work, we started working on a mathematical function code
generator, called Metalibm. This work was in the sequel integrated in the ANR research project
Metalibm under the name of Metalibm-Lutetia. We published several articles presenting the
general idea and workings of this code generator [32, 148]. In particular with [32], we could
show the necessity and feasibility of code generators for mathematical functions in various
use cases: we list, for example, adaptation of supported function definition domains and
adaptation of accuracy to the user’s needs, support of composed functions, such as 𝑒𝑥+17 +
sin𝑥, composed statically at generation time and no longer composed dynamically, support
for functions uncommon in classical mathematical libraries (libm), such as for the inverse
error function argerf , increase in productivity for libm developers or easier code maintenance.
While we presented our fully automatic, open-ended approach from a numerical software
design perspective in [148], we worked with colleagues in comparing our approach to their
competing, more semi-automatic performance-centric approach in [32]. We shall remark that
this later paper received the ARITH2015 Best Paper Award.

We worked in cooperation with several people from industry in an attempt to address
certain issues in the GNU mathematical library, in particular with respect to bad worst-case
performance and code maintainability. We presented our automatic code generation approach
to the open-source community with [146].

Our general publications about our Metalibm code generator were meant to give an
overview over this piece of software that has grown pretty large (> 13000 lines of code for
the core generator). We therefore published certain details in the code generation process in
separate papers. In [147], we looked at the case when the function to be implemented does
not allow for any algebraic argument reduction but where the function’s domain requires the
use of several approximation polynomials. Classical domain splitting used a regular splitting
grid. As the function’s steepness is not constant over the domain, this resulted in polynomials
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of varying degree for the different subdomains. With our approach, we can equalize the
polynomial degree over all subdomains and reduce the number of subdomains.

The regular domain splitting had the advantage that given the function’s argument it
was easy to deduces the index of the subdomain this argument would fall into and hence
which polynomial had to be used to compute the function’s image. For more complex domain
splittings, a binary tree of comparisons with constants and branches is used in the generated
code. While this approach requires only a logarithmic number of branches, it indeed does
require branches. Those are not acceptable for certain types of implementations, in particular
vectorizable code that applies a mathematical function in parallel elementwise to a vector of
arguments. To address this case, we have proposed a novel approach that tries to transpose
the regular splitting to the more complex ones: we compute the index of the subdomain by
evaluating a certain low-degree polynomial and truncating this polynomial’s result to an
integer. This work was published in [149].

The generation of code realizing a mathematical function requires itself a means to
evaluate the function, for instance in order to run the Remez approximation algorithm to
compute approximation polynomials for the function. For uncommon functions, given in
input to the generator merely defined e.g. by differential equations, this creates a chicken-
and-egg problem. In [163] we proposed a way to address this problem, using software to
evaluate functions defined by a certain type of differential equations in order to generate
code for these so called D-finite functions. We showed that such a semi-automatic approach
allows for efficient code production. We did so at the example of various functions, used for
example in high-energy particle physics. We have recently extended this work to the case
when the function to be implemented is the functional inverse of such a D-finite function. In
regards to this, an article is in preparation.

Even though our work on automatic code generation is still ongoing and is intended to
be opened more and more to similar domains for code generation, our Metalibm-Lutetia
generator has already delivered valuable results, in particular for applications where the speed
in designing code was most important. For example in [157], we described a mathematical
library for vector applications, where a function needs to be applied elementwise to vectors.
With the help of our code generator, we could design, develop and fine-tune this library,
which comprises 9 functions reaching from exponential over the trigonometric and inverse
trigonometric functions to particular functions such as cubic root, in about 2 weeks of work.
This time-frame is extremely low; manual development requires about 1 man-month per
function. Performance-wise, with our vectorized functions, we could obtain speedups of over
250%, while we did not use any assembly sequences or intrinsics but only C, coded in such a
way to make compiler autovectorization possible. This makes our approach a novel one.

We detail the research topics summarized in this Section in Chapter 4. In that Chapter we
also describe the connections between code generation for mathematical functions and for
linear time invariant filters we could exhibit.

1.3 A Priori Error Control in Computer Arithmetic

With the articles we published in function code validation, in particular with [40], we
had given ourselves the necessary basic bricks for reliable implementation of mathematical
functions. For code generation of reliable implementation of linear time invariant filters,
we had no such basic bricks. We strive for reliable implementation of digital filters using
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fixed-point arithmetic. The basic bricks required for the analysis of the behavior of digital
filters at generation time hence need to be reliable, too. As these basic brick algorithms are
supposed to be in an automatic tool without human intervention, in addition to the reliability
requirement, there is need for the algorithms to be able to guarantee that their error does not
exceed a certain a priori bound. This bound often is an absolute one. When implemented
using floating-point arithmetic, the algorithms therefore need to adapt their internal working
precision automatically.

With our work on the so-called Worst Case Peak Gain (WCPG) measure, published in [251],
we designed such an algorithm. It reliably computes a certain norm on a linear time invariant
filter with an error not exceeding a given a priori bound. With this work, a code generator
for digital filter no longer has to suffer the impact of truncation and roundoff inherent to
floating-point arithmetic, it is up to this enhanced floating-point arithmetic-based algorithm
to adapt its internal precisions. The code needs this measure, as it expresses by how much
an input signal can get amplified (or attenuated) by a digital filter. Our algorithm for the
WCPG measure is a creative mix of different types of arithmetic: the WCPG measure can be

expressed as the infinite sum |𝐷| +
∞∑︀
𝑘=0

⃒⃒
𝐶𝐴𝑘𝐵

⃒⃒
where 𝐴,𝐵,𝐶,𝐷 are matrices. This sum

needs to be properly truncated, in a way compatible with the expected error bound. This first
step is performed using an IEEE754 double-precision based eigensolver, as accuracy is not
paramount in this step. The approximate result of this eigensolver is then made reliable using
interval arithmetic; a reliable truncation order can be derived from this interval arithmetic
result. The sum is then evaluated multiple-precision floating-point arithmetic; reusing the
already computed eigendecomposition. This floating-point arithmetic is however enhanced
with code that adapts precision for the different matrix entries dynamically to satisfy the set
roundoff error bounds. Only with such a mix of arithmetics we could realize this algorithm
with an a priori error bound; plain IEEE754 arithmetic does not seem to suffice.

We recently extended our WCPG measure algorithm to handling a special case when the
WCPG measure does not need to capture the amplification of any input signal but only the
amplification of signals with a certain frequency envelope [254]. This algorithm is essentially
based on our core WCPG algorithm and reliable computation of a digital filter producing that
frequency envelope. The new algorithm also supports our a priori -error arithmetic concept.

Computing the WCPG measure safely and with easily controllable error is important to
make the fixed-point arithmetic used to implement a digital filter reliable, with respect to
both absence of overflow and boundedness of the roundoff error – which itself is given a
priori. An important step in designing a fixed-point algorithm is in determining the point
positions, i.e. the implicit scalings applied to the various fixed-point variables, implemented
with integer variables. Similarly, it is necessary to check that these integer variables cannot
overflow, i.e. flip around in a modular manner. Both targets are antagonistic: by increasing
the implicit scale, i.e. by moving the fixed-point variables Most Significant Bit position to the
left, overflow becomes less likely and can eventually be avoided. However, at the same time,
roundoff error increases as roundoff in fixed-point arithmetic is function of the implicit scale.
This task used to be performed manually and in a non-reliable manner through simulations.
With [252], we proposed a method to perform this task automatically and reliably, using
the WCPG measure. Due to the availability of an a priori bound, we can make the Most
Significant Bit Positions determined by our algorithm either optimal or over-estimated by at
most 1 bit.

We describe the research topics summarized in this Section in more detail in Chapter 5.
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We shall add that we have recently published work on reliable verification of digital
filter implementations against frequency specifications [253]. This work reuses our WCPG
algorithm from [251] and combines it with exact, rational arithmetic to give a reliable test
whether the filter satisfies the initial specifications. Even it is an important to filter code
generation, we refrain from further describing this algorithm, as it is conceptually different
from the arithmetic techniques this thesis focuses on.

1.4 Positionning with Respect to Other Research

As already mentionned, our work is organized three main topics: support and extension
of the IEEE754 Standard, floating-point code generation and a priori error computations.
In this Section, we try to position our research, in these three topics, with respect to other
research, which is part of state of the art.

Support and Extension of IEEE754 When published first in 1985, the IEEE754 Standard [116]
found its realization in Intel’s microprocessor x87, after which it had been modeled [197].
Supporting IEEE754-1985 meant implementing the floating-point operations in hardware,
sometimes using software to make the hardware less complex. Work by Figueroa [81] for
example shows how IEEE754-1985 operations for the binary32 (single precision) format can
be implemented with binary64 (double precision) hardware and mere conversions back
and forth between binary32 and binary64. Further work by the same author showed how
IEEE754-1985 could be supported in higher level languages [82].

Work by Markstein, Cornea and others [51–53, 185] showed how certain IEEE754 op-
erations, such as division and square root, could be implemented using no hardware but
software sequences, leveraging hardware for an fused-multiply-and-add operation and some
Newton-Raphson iteration seed operations. This work was showcased for the Itanium family
of processors. This fused-multiply-and-add operations, which computes 𝑥 × 𝑦 + 𝑧 with
one single, correct rounding, was not part of IEEE754-1985 but it was later including into
IEEE754-2008 [117].

The work initiated and driven by Muller on correctly rounded elementary functions [173]
led first to the development of approaches to assess the difficulty of rounding elementary
functions, such as exp to the IEEE754 formats binary32 and, in particular, binary64 [170–174].
In a second step, Hough, Ziv, Defour and others showed that correct rounding of elementary
functions was technically and economically feasible [57, 68, 165, 175, 264]. This finally allowed
for the inclusion, as a non-mandatory part, of correctly rounded elementary functions into
the 2008 version of IEEE754 [117].

The 1985 version of IEEE754 was a binary floating-point Standard only [116]. The work
of Cowlishaw showed that the extension of IEEE754 to include decimal floating-point arith-
metic was technically feasible and an economically reasonable selling instrument for the
Standard [55, 56]. The work of Cornea, Tang and others proposed another, binary significand
representation for decimal floating-point formats, allowing for more efficient software imple-
mentation [49]. This led to the inclusion of decimal floating-point formats, in two different
encodings, in the 2008 version of the IEEE754 Standard [117]. The technical realization of
this decimal arithmetic, for example in hardware, was then discussed by Schwarz, Schulte
and others [34, 78, 244, 256]. Harrison contributed ways to implement decimal transcendental
functions [109].
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Algorithms for floating-point summation developed mainly by Rump, Graillat and others
and, in particular, rigorously proven correct by Rump [97, 200, 229, 231, 232], showed that
so-called errorfree transformations [97, 138, 247, 248], i.e. ways to compute and express the
sum or the product of two floating-point numbers as an unevaluated sum of floating-point
numbers, are a powerful tool to extend the floating-point environment: with these algorithms,
floating-point arithmetic is no longer just an approximation technique with errors everywhere,
but can be seen as an exact calculus. Work by Demmel, Riedy and others has led to a proposal
to include such errorfree transformations in the upcoming 2019 version of the IEEE754
Standard, most probably as a non-mandatory operation [220]. These approaches compete
with the idea put forward by Kulisch to include necessarily hardware-based operations on
long accumulators into the IEEE754 Standard [137, 141–144].

Extending the IEEE754-2008 Standard in terms of mixed-radix operations is a domain
on which we do not seem to compete with other researchers [28, 125]. Other domains of
our work on extending the IEEE754 Standard are more common, such as our work on
faithfully rounded 2-norms [101]. Support for binary IEEE754-2008 floating-point arithmetic,
including the so-called heterogeneous operations, is available, to our knowledge, only in
Intel’s proprietary binary floating-point support library. We shall discuss this matter in more
detail in Section 3.2.1 of this work.

Floating-point Code Generation The idea to generate numerical code instead of designing
it manually is not new. Letting the computer take care of the details is an approach longtimes
used for VHDL-based hardware description for FPGAs. It can be found in the works of
Detrey, Tisserand, de Dinechin and others [62, 67, 72–74, 249]. The members of ANR Evaflo
project 2, led by Revol, worked on ways to express the input and output as well as the internal
representation of numerical objects to be transformed into code [12].

Code generation has been used as a powerful technique for numerical codes such as Basic
Linear Algebra Routines or Fast Fourier Transforms in tools like ATLAS and Spiral by Goto,
Püschel and others for quite some time [96, 212, 257]. However, their work concentrates on
ways to best express code so to allow optimizing compilers to take full advantage of the
parallel nature of modern, superscalar processors. Their work does not analyze the effects on
the output accuracy of the generated code in much detail.

At least partially using code generation to design and implement elementary functions
has been an idea mentioned by Muller at an informal meeting at École Normale Supérieure
de Lyon in 2006 and subsequently followed by several researchers, including in particular
Brunie, Revy, Jeannerod and, also, ourselves [30, 33, 126, 127, 165, 218, 219]. The works of
Defour already contain basic elements of code generation, as he used to use Maple scripts
to compute the parameters of polynomials and tables to be put into code for elementary
functions [68].

As we shall discuss in detail in Section 4.3 of this work, code generation for mathematical
functions has to overcome a chicken-and-egg problem where code to evaluate the function
is needed for the design of code to evaluate the functions. Ways to evaluate differential
equations for functions of a certain type, viz. D-finite functions, have been studied by
Salvy, Mezzarobba and others for quite some time [15, 190, 191]. We build on their work for
open-ended code generation.

2. http://www.ens-lyon.fr/LIP/Arenaire/EVA-Flo/
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A priori Error Computations Arbitrary and multiprecision arithmetic allows the precision
numerical algorithms run in to be chosen freely and, for multiprecision, even dynamically at
run-time [86,102]. This concept has been used for quite some time –since the 1970ies– and was
popularized by Bailey, Brent, Fousse, Zimmermann, Lefèvre and others [25, 86, 102, 110, 128].

However, multiprecision code allows for the adaptation of the precision used in the code
only; how this adaptation of precision affects accuracy is not clear. Forward-error analysis
allows this this question to be answered [111]. It is mainly performed on particular instances
of algorithms, typically for example to ensure the correct rounding of a mathematical function
to a dynamically chosen precision [39, 86].

For more complex numerical algorithms to solve problems of a less basic nature, such as
zero search and refinement with Newton-Raphson iteration or quadrature, what is finally
important to be controllable is the output accuracy. Algorithms should adapt their precision
to meet this goal. This is the idea behind our a priori error computations. The idea has
already been applied by Fousse for numerical, multiprecision quadrature [84, 85].

Our research presented in Chapter 5 is more inspired by these latter works than by the
approach followed by Neumaier, Revol and others where a priori error bounds are obtained
using interval arithmetic as a means to perform forward error analysis dynamically and to
repeat computations with increasing precision as long as the a priori accuracy bound is not
met [216]. We have however used such dynamic precision adaptation techniques, for example
for faithful evaluation of arbitrary functions inside Sollya [42].

1.5 Publications

In this Section we give a list of our publications in journals and in the proceedings of peer-
reviewed international conferences and peer-reviewed workshops which we have published
since our Ph.D. defense in 2008. At the end of this manuscript, on page 229, we shall give a
list of all our publications, including those ones that we published before our Ph.D. defense.

Journal articles
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CHAPTER 2
The IEEE754 Floating-Point

Environment

On résout certains problèmes par approximation,
en négligeant de petites quantités.

Jean le Rond d’Alembert, French Mathematician

2.1 Introduction

The basic idea behind floating-point arithmetic, i.e. a calculus where numbers are rep-
resented by an order of magnitude, expressed as an integer power of some radix, and by
a mantissa varying between 1 and that radix, is pretty old [213]. The most early electronic
computers also used this system already [6, 221] as it permits both large and small quantities
to be represented with the same ease, and, in particular, precision.

However, until the adoption of the IEEE754 Standard on Floating-Point Arithmetic [116],
first published in 1985, the precise behavior of the floating-point arithmetic operations of
one computer system could heavily differ from the one found on another computer system.
Writing portable floating-point programs or giving guarantees on their behavior proved
extremely difficult [48].

Since 1985, the IEEE754 Standard on Floating-Point Arithmetic has become adopted by all
major hardware vendors, got supported on all systems ranging from smaller processors, as
little as some embedded systems, for high end serves, clusters and supercomputers [24]. It
has become unthinkable for a hardware vendor to sell Floating-Point Processing Units that
are not compatible with the IEEE754 Standard.

The IEEE754 Standard has itself evolved since 1985. A first revision has been published
in 2008; this version is the currently binding one [117]. A second revision is under way and
expected to be published in 2019. This second revision has minor scope; it is supposed to
eradicate certain small flaws in the 2008 version, as well as to correct the definition of one
operation. A third revision, supposed to enhance the standard more significantly is scheduled
for 2028. An IEEE754 Standard revision is a lengthy process; any proposal for substantial
changes to be incorporated in the 2028 version is to be made in the next couple of years. We
would like to point out that we actively participate in the current revision process.
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The IEEE754 Standard currently defines floating-point numbers in two radices [117], the
binary radix 𝛽 = 2 and the decimal radix 𝛽 = 10. The support for the decimal radix has been
a 2008 addition.

Given a radix 𝛽, floating-point numbers are the numbers

(−1)𝑠 · 𝛽𝑒 · 𝑡

where 𝑠 ∈ {0, 1} is a sign bit, 𝑒 ∈ Z an exponent and 𝑡 a significand varying between 1 6 𝑡 < 2
for the binary radix and between 0 < 𝑡 < 10 for the decimal radix [117]. That significand, also
often called mantissa [197], is written with 𝑘 digits 𝑡𝑖 ∈ {0, . . . , 𝛽 − 1} in the given base 𝛽:

𝑡 = 𝑡0.𝑡1𝑡2𝑡3 . . . 𝑡𝑘−1.

In most cases 1, it is required that the significand have a non-zero leading digit 𝑡0. Significands
that abide by this condition 𝑡0 ̸= 0 are called normalized. Let us point out that when 𝛽 = 2
and the significand is normalized, 𝑡0 is necessarily 𝑡0 = 1. The leading digit 𝑡0 is the only
digit of 𝑡 with a weight 1 and hence called integer digit. All other digits are called fractional
digits [197]. The point separating the integer digit from the fractional digit is fixed but made
“floating” through the variable exponent 𝑒.

The most important parameter for a floating-point format, i.e. a set of floating-point
numbers written in the same way, is the parameter 𝑘 that determines how many digits are
stored in a floating-point number’s significand. This parameter 𝑘 is called the precision of the
floating-point number, resp. floating-point format. The greater 𝑘, the more digits are used to
represent real numbers with floating-point numbers and the more precise the representation
will be. As a matter of course, as a computer’s memory is finite, the precision 𝑘 will always
be a finite integer number.

Similarly, as memory is finite, there is a finite set of values the exponent 𝑒 of the floating-
point number representation. The IEEE754 Standard sets precise rules for the cases when the
exponent value becomes to small or to large; these rules are explained below. When proving
floating-point code, it is common to suppose that the exponent range is unbounded and to
provide an additional argument that this assumption is satisfied for the given program, as
the exponents actually do stay between the allowable ranges.

Bounding the significand 𝑡 between 1 and 𝛽, resp. 0 and 𝛽 for the decimal format, is a
manner of pure convention. It makes the floating-point number representation closest to the
so-called scientific notation, which is itself a convention. The IEEE754 Standard also defines
floating-point numbers with significands that have these bounds [117]. When handling
floating-point numbers in mathematical proofs, it is often easier to manipulate significands
that are integer numbers [197]. Converting from one convention to the other is easy, as it
suffices to shift the point in 𝑡 to the right and adjust the exponent 𝑒 accordingly:

(−1)𝑠 · 𝛽𝑒 · 𝑡0.𝑡1𝑡2 . . . 𝑡𝑘−1 = (−1)𝑠 · 𝛽𝑒−𝑘+1 · 𝑡0𝑡1𝑡2 . . . 𝑡𝑘−1.

Similarly, the fact that IEEE754 decimal floating-point numbers are not always normalized is
a particular feature of decimal arithmetic that complexifies proofs but can often be handled in
an ad-hoc manner.

1. A more detailed description is given just below. The support for a quantum in IEEE754 decimal arithmetic
complicates that description.
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In this work, we hence define the floating-point numbers 𝛽F𝑘 of radix 𝛽 ∈ {2, 10} and of
precision 𝑘 with unbounded exponent as the set of numbers

𝛽F𝑘 =
{︁
𝛽𝐸 ·𝑚, 𝐸 ∈ Z,𝑚 ∈ Z, 𝛽𝑘−1 6 |𝑚| 6 𝛽𝑘 − 1

}︁
∪ {0} .

In cases when the context leaves no ambiguity about the chosen radix 𝛽, we shall often notate
F𝑘 instead of 𝛽F𝑘. Similarly, when the precision 𝑘 is fixed and clear, we shall just notate F.

In certain cases, in particular, when it comes to design an algorithm that is required to
work on the full range of possible floating-point inputs or outputs, it is necessary to take
the boundedness of the floating-point exponent 𝐸 into account. This exponent is stored
on a certain number of bits; we shall speak of the exponent width 𝑤. We therefore define
the following two sets of floating-point numbers. We shall point out that there is a slight
asymmetry between the floating-point numbers in the binary and the decimal radix:

The floating-point numbers in radix 𝛽 = 2, precision 𝑘 and an exponent width 𝑤 are given
by:

2F𝑤𝑘 =
{︀

2𝐸 ·𝑚, 𝐸 ∈ Z,𝑚 ∈ Z, 2𝑘−1 6 |𝑚| 6 2𝑘 − 1,−2𝑤−1 − 𝑘 + 3 6 𝐸 6 2𝑤−1 − 𝑘
}︀

∪
{︁

2−2𝑤−1−𝑘+3 ·𝑚, 𝑚 ∈ Z, |𝑚| 6 2𝑘−1 − 1
}︁
.

As shown, the binary floating-point numbers are composed of two subsets; the first subset,
where the exponent 𝐸 varies corresponds to the so-called normal numbers, the second subset,
where the exponent is fixed, corresponds to the so-called subnormal numbers [117].

The floating-point numbers in radix 𝛽 = 10, precision 𝑘 and an exponent width 𝑤 are
given by:

10F𝑤𝑘 =
{︁

10𝐸 ·𝑚, 𝐸 ∈ Z,𝑚 ∈ Z, |𝑚| 6 10𝑘 − 1,−3 · 2𝑤−1 − 𝑘 + 2 6 𝐸 6 3 · 2𝑤−1 − 𝑘 + 1
}︁
.

We shall mention that for the decimal floating-point numbers, there is no distinction between
normal and subnormal numbers.

However, the representation of decimal floating-point numbers is not always unique, as
their significand 𝑚 is not necessarily normalized. For example, one tenth may be represented
as 10−1 · 1, as 10−2 · 10, or even as 10−16 · 1000000000000000. A decimal floating-point
number may have one or more representations. The set of floating-point representations
–exponents and significands– that correspond to one decimal floating-point number are called
the number’s cohort [117].

In addition to floating-point numbers, the IEEE754 Standard foresees additional floating-
point data points that can represent non-real, uninitialized or erroneous data or infinities:

— Not-A-Number (NaN) data represent floating-point data that does not correspond to
numbers in the set of the extended reals and

— +∞ and −∞ represent floating-point data that correspond to signed infinities [117].

The IEEE754 Standard further distinguishes between zero with a positive sign, i.e. +0, and
zero with a negative sign, i.e. −0. The actual distinction is spelled out for each case in
the Standard [117]. The modelization of floating-point numbers does not provide means
to express these data and distinctions. Where required, we provide ad-hoc proofs that our
algorithms correctly work in these cases.

The IEEE754-2008 Standard defines a standard set of floating-point formats, i.e. combi-
nations of a radix 𝛽, a precision 𝑘 and an exponent width 𝑤 [117]. We list these standard
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IEEE754-2008 format IEEE754-1985 name radix precision exponent width
𝛽 𝑘 𝑤

binary32 single precision 2 24 8

binary64 double precision 2 53 11

binary128 quad precision 2 113 15

binary16 - 2 11 5

decimal64 - 10 16 8

decimal128 - 10 34 12

decimal32 - 10 7 6

Table 2.1 – IEEE754 Standard floating-point formats

formats in Table 2.1, giving the name of the format as defined by the 2008 version of the
Standard [117], its name in the 1985 version where appropriate [116], the radix 𝛽, the precision
𝑘 and the exponent width 𝑤. We shall mention that the binary32 and binary64 formats are
the ones that are the most commonly used.

Up to this point, we have explained what the IEEE754 floating-point numbers are and that
we can model them with the set 𝛽F𝑤𝑘 . Their use for arithmetic is yet to be explained. Before
defining operations on floating-point numbers, we have to establish a link between them and
the real numbers which they are supposed to represent:

— All floating-point numbers in 𝛽F𝑤𝑘 are real numbers. The mapping from the floating-
point numbers to the real numbers is hence trivial.

— When a real number 𝑥 ∈ R is a floating-point number in the set 𝛽F𝑤𝑘 , it can be represented
exactly as floating-point number. We say that 𝑥 is representable in 𝛽F𝑤𝑘 [197]. Otherwise,
that real number 𝑥 needs to be mapped to a floating-point number ̂︀𝑥 that approximates
it. This mapping can be obtained through the operation called rounding.

The IEEE754 Standard defines several ways a real number 𝑥 ∈ R can be rounded to a
floating-point number ̂︀𝑥 ∈ 𝛽F𝑤𝑘 : given 𝑥 it is possible to choose

— the floating-point number ̂︀𝑥 = ∘ (𝑥) closest to 𝑥; in case of tie an additional rule decides
how to break the tie,

— the floating-point number ̂︀𝑥 = O (𝑥) just below 𝑥,

— the floating-point number ̂︀𝑥 =M (𝑥) just above 𝑥 or

— the floating-point number ̂︀𝑥 = ◁▷ (𝑥) whose development into digits has been truncated
to fit the precision of the floating-point format.

The rounding ∘ is called round-to-nearest, O is called round-down, M is called round-up and
◁▷ is called round-toward-zero [117].

As a matter of course, all these roundings ◇ ∈ {∘,O,M, ◁▷} depend on the floating-point
format 𝛽F𝑤𝑘 they round the reals to. The most important parameter is precision. This is why
we often notate it explicitly as an index of the rounding function: we write ◇𝑘 instead of ◇. In
cases when we manipulate floating-point numbers in two radices at the same time, we shall
notate 𝛽◇𝑘.
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In order to suit our needs for proven floating-point programs, we model these roundings
◇𝑘 : R→ F𝑘 as the functions defined for a non-zero real 𝑥 by:

∘𝑘(𝑥) = ulp𝑘(𝑥) ·
⌊︂

𝑥

ulp𝑘(𝑥)

⌉︂

O𝑘(𝑥) = ulp𝑘(𝑥) ·
⌊︂

𝑥

ulp𝑘(𝑥)

⌋︂

M𝑘 (𝑥) = ulp𝑘(𝑥) ·
⌈︂

𝑥

ulp𝑘(𝑥)

⌉︂

◁▷𝑘 (𝑥) = sgn(𝑥) · O𝑘 (|𝑥|) ,

where sgn is the sign function that is −1, 0 or 1 depending on the sign of its argument and
ulp𝑘 is an auxiliary function we define just below. The function ⌊·⌉ : R → Z is the function
mapping a real number to its closest integer; this function requires a tie-breaking-rule. For
any rounding ◇𝑘, the rounding of zero is zero: ◇𝑘(0) = 0. We shall remark that the roundings
can be defined also in other ways; the definition we use is also the one used by Flocq [22].

The basic idea behind these rounding functions is that when rounding into 𝛽F𝑤𝑘 , two
quantities need to be determined: the integer exponent 𝐸 that determines the right order of
magnitude 𝛽𝐸 and, in a second step, the integer significand 𝑚. As the integer significands are
separated by units of 1, it is reasonable to express the order of magnitude 𝛽𝐸 corresponding
to a given real 𝑥 as the so-called unit-in-the-last-place function ulp𝑘. We define this function
for a non-zero real 𝑥 in radix 𝛽 and precision 𝑘 as indicated below [195]. Remark that this
definition does not account for any limitation of the exponent range in a floating-point system;
we need to check the assumption that no underflow occurs separately if we base our proofs
on the following definition of the ulp𝑘 function. We define:

ulp𝑘(𝑥) = 𝛽EXP(𝑥)−𝑘+1.

Here, the EXP function yields what we call the natural exponent of a real number [86,195,229].
When rounding to a floating-point format with unbounded exponent range, this function can
be easily defined with:

EXP(𝑥) =
⌊︀
log𝛽 |𝑥|

⌋︀
.

When rounding to an IEEE754-2008 floating-point format with bounded exponent range is
required, this definition can be adjusted to reflect the boundedness of the exponent. The
formulas are however rather complicated. We refrain from giving them explicitly for the sake
of brevity; the interested reader can consult [117, 197] for a more detailed description.

When first published in 1985, the IEEE754 Standard brought a novel concept to floating-
point arithmetic. This concept is the cornerstone to the provability of programs running
on IEEE754 compliant hardware. As it is basic on a mathematical principle and leaves the
(hardware) implementation details to each vendor, it has certainly contributed a lot to the
success the IEEE754 Standard has had among hardware vendors. The concept is the concept
of correct rounding for an operation.

A floating-point realization 𝐹 : F × · · · × F → F of a real function 𝑓 : R × · · · × R → R,
mapping a given couple of real arguments to another real number is called correctly rounded
iff 𝐹 yields, for any couple of floating-point arguments in F the floating-point number in F
that is equal to the one if 𝑓 were evaluated on these floating-point input arguments exactly
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with infinite precision and then rounded, with some rounding function ◇ to F. This means
that 𝐹 satisfies

∀𝑥0, . . . , 𝑥𝑛−1 ∈ F𝑛, 𝐹 (𝑥0, . . . , 𝑥𝑛−1) = ◇ (𝑓 (𝑥0, . . . , 𝑥𝑛−1)) .

The IEEE754 Standard requires the (basic) operations it defines to be correctly rounded [117].
For example the addition operation ⊕ : F× F→ F, which it defines, satisfies: for any floating-
point inputs 𝑥, 𝑦 ∈ F, 𝑥⊕ 𝑦 = ◇(𝑥+ 𝑦).

The concept of correct rounding is important for the provability of floating-point software
as it allows us to precisely determine, characterize or describe the output of any IEEE754
operation, by decomposing it, formally, into the underlying operation on real numbers and
the rounding function. However, this concept of correct rounding is also a challenge to us:
even if the Standard requires us to compute in a way as if the underlying real function were
evaluated exactly with infinite precision, there is often no infinitely precise way of evaluating
it. Infinite precision often means infinite memory, which does not exist.

2.2 Novel Operations in IEEE754-2008 and Future Extensions

The concept of correct rounding was first defined in 1985 for the first version of the
IEEE754 Standard and the operations it defined. When adding operations to the Standard
in 2008, this concept was naturally applied also to these novel operations. We shall describe
these additions in the next Section 2.2.1, before highlighting a certain class of novel operations,
the so-called Heterogeneous Operations in Section 2.2.2.

2.2.1 Overview on IEEE754-2008 Extensions to IEEE754-1985

In this Section, we want to highlight the major differences and enhancements the 2008
version of the IEEE754 Standard brought with respect to the former 1985 version [116, 117].
We want to do this comparison from a three-fold standpoint: first the standpoint of someone
who is in charge of providing a complete implementation of the IEEE754-2008 Standard, say
through a compliance library such as our libieee754 library we shall describe in Chapter 3,
Section 3.2. Second, we want to understand what changes were judged admissible between
the 1985 and 2008 version in order to extrapolate what kind of enhancement we might want
to propose for later revisions of the Standard. Finally, we also want to describe to a typical
user from numerical computing what novelties they can expect from the 2008 version of the
Standard.

Designing a compliant implementation of the 1985 version of the IEEE754 Standard [116],
be it in hardware or in software, was relatively easy. IEEE754-1985 is concerned solely with
binary floating-point arithmetic. It essentially defines two floating-point formats, single and
double precision. These two formats were accompanied by a single-extended format, which
was essentially never implemented, and a double-extended format which essentially matches
the Intel x87 floating-point coprocessor’s internal representation [116, 197] but was rarely
implemented elsewhere. The standard defined the four rounding modes round-to-nearest-
ties-to-even, round-down, round-up and round-towards-zero [116].

IEEE754-1985 defined just a couple of basic operations: addition, subtraction, multiplica-
tion, division, division remainder, round to an integer value stored in a floating-point variable,
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conversions between all formats, conversion to and from machine integers, conversion from
and to decimal character sequences and comparisons between floating-point variables [116].

While the Standard required correct rounding for most operations, it did not require
correct rounding for conversion from and to character sequences –at least not in all cases [116].
All defined IEEE754-1985 operations immediately depended on a global rounding-direction
mode, stored as a global status variable. This included the round-to-integer floating-point
operation and the conversions from and to integers [116]. This latter point meant that
implementations of languages such as C that require the rounding from a floating-point type
to an integer type to be towards zero –a truncation– had to store, change and reestablish the
rounding mode for each of these operations 2.

For the 1985 version, all operations were considered homogeneous, i.e. an addition
consumed to operands of the same floating-point format and produced a floating-point still in
the same format. The IEEE754-1985 even explicitly prohibited operations for which the result
would be in a format with less precision that the one of the operands 3 [116]. This means that
each of the operations addition, subtraction, multiplication, division and square root require
only one implementation per format. This means a compliance library for 1985 just has to
support 10 different functions for these 5 operations, when supporting the two formats single
and double precision.

Certain operations that are commonly required for a complete floating-point environment,
such as the copysign, negate, nextafter, scalb or logb operations, as well as the predicates finite,
isNaN or unordered, are only recommended by the 1985 version of the IEEE754 Standard [116].
The scalb and logb operations, computing 𝑥 · 2𝐸 resp. ⌊log2 𝑥⌋, are not required to work on
floating-point numbers that are not normal [116]. This greatly simplifies their implementation
but also limits their usage in numerical applications.

For certain aspects, IEEE754-1985 leaves large room for choices made by the implementer
of the Standard: for example, when a computation leads to a value smaller in magnitude
than the smallest normal floating-point number and the rounded result is unequal to the
mathematically exact one, the IEEE754 Standard requires status flags indicating these con-
ditions to be set 4 [116, 117]. Detection of these two conditions can be done, according to
IEEE754-1985, in four different ways: underflow can be determined before or after rounding
and inexactness can be associated to proper inexactness or to denormalization loss [116].
Similarly, the IEEE754-1985 Standard distinguishes between two different kinds of Not-A-
Number (NaN) data: signaling NaNs or quiet NaNs. While it requires signaling NaNs to
provoke floating-point exceptions and prohibits quiet NaNs from provoking exceptions 5,
the Standard does not describe how these two kinds of NaNs can be distinguished by their
memory encoding. This leaves freedom to the implementer of the Standard but is also source
of incompatibilities and portability issues the user can be confronted with.

To sum up, for a compliance library designer, the IEEE754-1985 Standard [116] mandates
about 70 functions –operations– to be implemented, when supporting both floating-point
formats defined by the Standard. This number includes function for the operations that are
just recommended by the Standard, such as copysign or logb.

Implementing the 2008 version of IEEE754, e.g. with a compliance library, is another

2. https://software.intel.com/en-us/articles/fast-floating-point-to-integer-
conversions

3. The interested reader may consult footnote 4 of the 1985 version of the IEEE754 Standard
4. under default exception handling, see Section 2.3 for details
5. in most circumstances; exceptions to this rule exist [116]

https://software.intel.com/en-us/articles/fast-floating-point-to-integer-conversions
https://software.intel.com/en-us/articles/fast-floating-point-to-integer-conversions
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matter. IEEE754-2008 adds a vast number of novelties to the Standard. The first, major
difference is that IEEE754-2008 floating-point arithmetic is no longer binary only: IEEE754-
2008 defines two radices [117], 𝛽 = 2 and 𝛽 = 10.

The list of the floating-point formats defined by the Standard is extended: in addition to
the binary32, i.e. single precision, and binary64, i.e. double precision, formats, IEEE754-2008
defines 6 the binary16 and binary128 formats for the binary radix and three completely new
formats for the decimal radix, viz. decimal32, decimal64 and decimal128 [117].

The 2008 version of the Standard adds a new rounding mode, called roundTiesTo-
Away [117]. In this mode, rounding is performed to the nearest floating-point number, but in
contrast to the existing mode that rounds to the nearest floating-point number, roundTiesTo-
Even, ties, i.e. midpoint cases, are broken differently [117].

IEEE754-2008 still supports the basic operations addition, subtraction, multiplication,
division and square root but adds a sixth operation, called Fused-Multiply-And-Add (FMA),
that computes 𝑎× 𝑏+ 𝑐 with one final, correct rounding [117].

A major difference between IEEE754-1985 and IEEE754-2008 with respect to these basic
operations –addition through FMA– is that in contrast to the former Standard, which explic-
itly forbade this feature, IEEE754-2008 requires implementations to support heterogeneous
versions of these operations [117]. This means that one operation is supported for all possible
combinations of supported formats 7 for the operands and the result. For example, when
the two formats binary32 and binary64 are implemented by an environment, the addition
operation comes in eight variants, four for the combinations on the operands, times two for
the result formats. As it has three operands, the FMA operation already requires 16 variants
for two formats. When three formats like binary32, binary64 and binary128 are implemented,
addition already comes in 27 variants, FMA in 81.

From a compliance library designer’s perspective, supporting all these variants of the
heterogeneous operations is not trivial. In particular, when the result’s precision is less than
the operands’ precisions, guaranteeing the correct rounding property, required by IEEE754-
2008, is a challenge [117], as traditional hardware will just support homogeneous operations.
We devote the next Section 2.2.2 to a detailed analysis of this challenge.

Concerning the other operations that were mandatory already in IEEE754-1985, viz.
rounding to an integer floating-point number, conversion from and to machine integers and
conversions from and to character sequences, the 2008 version of the IEEE754 Standard is
also much broader [117]: the roundings to integer floating-point numbers as well as the
conversions from and to machine integers come in various variants, differing in the way their
round their result, either depending on the global rounding mode or a rounding direction
indicated in their name, and in subtle differences concerning on whether or not they indicate
if their result is different from the input by setting an inexact flag. The conversions from and
to character sequences support a new radix for the character sequences: the hexadecimal
radix. Decimal character sequence input and output is of course still supported, too. The
IEEE754-2008 Standard requires correct rounding for character sequence conversion for both
input and output in a wide exponent range and recommends these operations to be correctly
rounded for all cases [117].

As IEEE754-2008 supports floating-point numbers in two radices, it of course supports

6. The binary16 and decimal32 are so-called interchange formats, intended to store floating-point data, not to
compute with them [117].

7. of one radix; multi-radix combinations are not (yet) supported
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conversion operations between the formats of both radices. These conversions must be
correctly rounded, according to the current rounding mode of the output format’s radix [117].

The operations recommended by IEEE754-1985, such as logb, scalb and copysign, become
mandated operations in IEEE754-2008 [117]. In the 2008 version, there are no longer any
restrictions, such as normal numbers only, for logb and scalb; both work for subnormal
numbers and with correct rounding. IEEE754-2008 extends the list of supported predicates
and classification operations, which serve the purpose of detecting the nature of a floating-
point datum: normal or subnormal number, infinity, Not-A-Number etc. IEEE754-2008 also
provides a total order predicate that allows floating-point data to be sorted in an unambiguous
manner, even if it includes Not-A-Number data [117].

The IEEE754-2008 itself contains a Clause that defines operations that are just recom-
mended by the Standard, but not mandatory for a compliant implementation [117]. The list
of these recommended operations is quite comprehensive: it ranges from so-called reduction
operations that compute approximations to sums, dot products and products of vectors of
floating-point numbers to correctly rounded mathematical functions, such as exponential,
logarithm or trigonometric functions [117]. The implementation of these functions is only
recommended by the Standard, not mandatory. When implemented, these functions however
must be correctly rounded, too, even though correct rounding of these functions is difficult
due to the so-called Table Maker’s Dilemma [165, 197].

The 2008 version of the IEEE754 Standard removes certain subtleties from the 1985
version [117]. These subtleties may result in different behavior across platforms implementing
the Standard. First of all, underflow and tininess detection could be performed in four
different ways in the 1985 version. In the 2008 version, only two different ways are described
and permitted [117]. The subsisting two ways do not affect the floating-point results delivered
by the environments; they only affect the setting of diagnostic flags when the rounding goes
upwards to the least normal floating-point number. Second, IEEE754-2008 clearly determines
which bit in the memory encoding of binary IEEE754 floating-point numbers determines
whether a Not-A-Number datum is a so-called signaling or quiet Not-A-Number [117].

The IEEE754-2008 however adds a novel cause of portability issues: IEEE754-2008 floating-
point numbers in the decimal radix can be encoded in two different encodings, the so-called
Densely-Packed-Decimal and the Binary Encoding [117]. The Standard however assumes
this double choice and mandates that conversion function be provided by any environment
implementing decimal floating-point numbers [117].

To sum up, the 2008 version of the IEEE754 Standard is way more comprehensive than the
1985 version [117]. It provides certain operations in dozens of variants. From a compliance
library writer’s perspective, these variants add complexity. For a user, they simplify certain
tasks however and are hence useful. The novel definition of a second radix supported by
the Standard, the decimal radix, effectively doubles the number of floating-point operations
required for an implementation. A major increase in operation count stems however from the
fact that the basic computational operations, such as addition or Fused-Multiply-And-Add
in IEEE754-2008 heterogeneous and must be provided with one single, correct rounding
for all combinations of operand and result format combinations [117]. We will discuss this
requirement in the next Section 2.2.2. It results in the following numbers: were about 70
operations required for support of the mandatory parts of IEEE754-1985 in the binary32
and binary64 formats, more than 350 operations are required for these formats in IEEE754-
2008. When decimal floating-point arithmetic is added with the two formats decimal64 and
decimal128, the operation count essentially doubles to about 720 operations. The additional
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support of the binary128 format increases the operation count again to about the double.

2.2.2 Heterogeneous Operations in IEEE754-2008

As we have already stated in Section 2.2.1 above, the IEEE754-2008 Standard defines
so-called heterogeneous operations for which the input and output formats differ in precision
and exponent width. For example, an addition operation taking two IEEE754 binary64
operands and returning an IEEE754 binary32 result is heterogeneous [117].

While this enhancement of the IEEE754 Standard still increases the closedness of the
floating-point environment, as floating-point numbers of all formats can be combined for all
operations, it is not completely innocuous: at least in certain rounding modes, typically in the
default round-to-nearest mode, the heterogeneous operations cannot be implemented just
using existing operations, such as homogeneous operations, followed by format narrowings.
Indeed, a format narrowing induces a second rounding and the subsequent rounding may
yield to a result different from the one obtained when only performing the IEEE754-mandated
single rounding.

For example, take the two IEEE754 binary64 floating-point numbers 𝑎 = 223 + 17 and
𝑏 = 2−1 − 2−31. Suppose that a heterogeneous addition with an output as an IEEE754
binary32 is to be performed. The infinite precision addition result clearly is 𝑐 = 𝑎 + 𝑏 =
223 +17+2−1−2−31. The binary32 format having 24 bits of precision this value 𝑐 is just below
the midpoint 223 + 17 + 2−1 of the two binary32 numbers surrounding 𝑐, i.e. 223 + 17 and
223 + 18. As the value is below the midpoint, the correct heterogeneous rounding to nearest
hence is ̂︀𝑐 = 223 + 17. Suppose now that a homogeneous addition with rounding-to-nearest to
IEEE754 binary64 is performed first. As the binary64 format has 53 bits of precision, the two
binary64 numbers surrounding 𝑐 = 223 + 17 + 2−1 − 2−31 are 𝑐𝐷 = 223 + 17 + 2−1 − 2−29 and
𝑐𝑈 = 223 +17+2−1. Their midpoint is 𝑐𝑀 = 223 +17+2−1−2−30. The homogeneous addition
hence performs a rounding-to-nearest that goes upwards, yielding 𝑐′ = 𝑐𝑈 = 223 + 17 + 2−1.
This intermediate binary64 result now gets rounded again, to the binary32 format. As
𝑐′ exactly lies on the midpoint of the two binary32 numbers surrounding it, in round-to-
nearest an IEEE754 tie-breaking rule is applied: in default binary IEEE754 floating-point
arithmetic [117], the tie is broken by returning the number whose significand ends with an
even (zero) bit. For instance, ̂︀𝑐′ = 223 + 18 is returned. Clearly, the correct rounding ̂︀𝑐 obtained
by rounding once and the one obtained with a double rounding, ̂︀𝑐′, are different.

This double rounding issue is different from double rounding phenomena already de-
scribed in the literature [81]. For example, it is possible to implement the IEEE754 binary32
homogeneous operations using solely binary64 homogeneous operations and conversions
back and forth between binary32 and binary64. The IEEE754 format binary64 provides
enough precision so that a double rounding first to binary64 and then to binary32 is innocu-
ous if the binary64 inputs of a binary64 homogeneous operation are actually representable
in binary32 [81]. In our case, this last assumption is not satisfied: in a binary64 to binary32
heterogeneous operation, the binary64 inputs do not generally hold on a binary32 number.

It is clear that the issue with the double rounding stems from the rounding in the narrow-
ing operation that induces the second rounding. Format widenings however, for example
from the IEEE754 binary32 format to the binary64 format, do not provoke any rounding, as
all floating-point numbers of the less precise format are exactly representable in the preciser
format. This observation allows for an immense reduction in the number of heterogeneous
operations that need to be supported: all heterogeneous operations with operands of different
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formats can be subsumed into heterogeneous operations where all operands have the same
format, as widenings can be used to exactly convert operands of less precise formats to the
format that is most precise among all operands. Similarly, heterogeneous operations where
the output format’s precision is higher than the precision of the operands can be implemented
easily with widenings. Some care needs to be taken in order to correctly handle IEEE754
Not-A-Number (NaN) data, which comes with a payload [117]. While the IEEE754 Standard
does not precisely define the meaning of a NaN’s payload [117], it clearly specifies that
an operation must produce the same NaN in output when one of its operands is a NaN,
including the payload. For the heterogeneous operations relying on intermediate widenings,
this may induce some issues with the NaN payloads when a NaN is first widened to fit the
other operands’ format and then heterogeneously “rounded” back to its original format, as it
traverses a heterogeneous operation. As an example, consider a binary32 NaN with a specific
payload on the binary32 operand of an IEEE754 binary32 plus binary64 to binary32 hetero-
geneous addition that gets implemented with a widening of the first operand to binary64,
followed by a heterogeneous binary64 plus binary64 to binary32 addition. In the end of the
day, that operation is required to return the original NaN, with its original payload [117].

The introduction of the heterogeneous operations is also a challenge for floating-point
environment realization in languages, such as C, and for testing. While the rules for recursive
expression evaluation, with infix operations, are settled for most languages, such as C [122],
they do no longer fit for the heterogeneous operations. Consider for instance the following C
code:

double a = ...;
double b = ...;
float c;

c = a + b;

By the classical evaluation rules [122], the compiler is to translate this sequence that does
perform a double rounding, by first rounding the sum 𝑎 + 𝑏 to IEEE754 binary64 (double
precision), then to IEEE754 binary32 (single precision, called float in C). By the introduction
of heterogeneous operations in IEEE754-2008, languages are challenged with the question
whether a change in semantics should occur. Would it be reasonable to translate this sequence
into an heterogeneous IEEE754 binary64 to IEEE754 binary32 addition? If yes, would this new
evaluation rules endanger existing programs? What about more complex expressions, with
intermediate results and, possibly, explicit casts? These questions are not easy to answer. Until
a satisfying answer is found, it seems reasonable to express the IEEE754-2008 heterogeneous
operations as functions whose input and output types are explicitly given in the function
name and that need to be called explicitly where needed. The functions can be provided as
inlinable functions or compiler builtins, so they will not suffer any performance overhead due
to a real function call. As a matter of course, this explicit fashion of expression heterogeneous
operation puts a burden on the user, as they must spell out expression trees with infix
operations manually as prefix trees, calling these heterogeneous functions.

However, whatever the solution defined by languages be, as they are among the manda-
tory operations required by the IEEE754-2008 Standard, solutions to implement the heteroge-
neous operations are needed. Processor and system vendors, as well as all implementers of
the floating-point environment offered by operation systems, have several options:

— System implementers may consider that heterogeneous operations will be used rarely
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and hence do not affect overall application performance. They may hence choose to
implement these operations fully using only plain integer arithmetic, simulating the
different steps usually performed by floating-point hardware [183].

— Hardware vendors may also decide to add hardware support for heterogeneous op-
erations. Such hardware support can be realized in different manners: first of all, it is
possible to add hardware units that produce their output on formats of less precision
than the precision of the operands. Existing designs for adders, multipliers etc. may be
modified and even be reused for both tasks. As that datapath width of the operands and
the output are not the same, hardware designers may however encounter problems with
access to the memory hierarchy in terms of existing datapath widths [237]. Additionally,
just adding hardware units or extend existing units for uncommon operations is not the
most energy-efficient option.
Second, hardware designers can adopt approaches for which the existing hardware units
need to be modified only minimally: the Itanium Processor family, for example, has
supported heterogeneous operations for at least a decade [52, 177]. The floating-point
instructions of this processor family take operands and produce results in an extended,
82 bit wide format [52, 177], with significands of 64 bit length [52, 177]. However,
each instruction is also labeled with a rounding mode and a rounding precision: even
though it returns a wide significand all the time, the instruction performs rounding to
a lower precision, regardless of the precision of the operands [52]. Implementation of
heterogeneous operations is easy with such kind of hardware: it suffices to choose a
lower precision for the output. Even though the instructions are well-defined, even
in irregular cases. For example, when rounding to a format with lower precision and
lower exponent width requires to perform subnormal rounding, the output however
is to be delivered in the extended 82 bit format, the instruction is specified to first
perform denormalization for subnormal rounding and then renormalization for the
wider, extended format [52]. These cases are not all realized in hardware, though:
hardware just handles the most common cases and traps to request software support
for corner cases [52, 177]. Additional cost for hardware is hence reduced.
Third, to provide support for the IEEE754-2008 heterogeneous operations, hardware can
include mechanisms to correct the possibly wrong result that may be obtained through
a double rounding, when first a rounding to the operands’ precision is performed and
then a second rounding to the heterogeneous operation’s output precision.
In the literature, two ways to perform such corrections can be found: first a technique,
which to our knowledge has been patented but not implemented yet, that saves off
three decisive bits of the the infinite precision significand at the first rounding (the
round, guard and sticky bits [77, 197]) in order to enable a subsequent, second rounding
to be corrected [54]. The description of the approach does not explain clearly where
those three correction bits are stored: in a global status register, which would hinder
SIMD implementations of the technique, or in special heterogeneous-rounding registers,
which might be cumbersome to add to existing processor designs.
The second approach found in the literature is more precisely specified and has already
been realized in certain processors [2]. It is based on the observation that no double
rounding issue can be observed in any eventual rounding mode to the lower preci-
sion format when the first rounding is done in a non-classical rounding mode, called
round-to-reround by certain hardware vendors [2], and also known as round-to-odd
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in the preexisting literature [21]. The idea is simple: when the difference in precision
between the format the operation’s result is first rounded to and the final format of
the heterogeneous operation is at least 3 bits, all bits required to correctly perform the
second rounding can be stored in the intermediate, larger precision format: the round
bit, the guard bit and the sticky bit [77, 197]. The round and guard bits are anyway
present in the larger precision format. The sticky bit is however the logical or of all other
trailing bits in the infinite precision significand [77]. This bit must be computed and ma-
terialized as the last significand bit of the intermediate rounding: hence round-to-odd
sets the least significant bit to one whenever the rounding is inexact and to whatever
value is required when the rounding is exact [21]. The implementation in hardware
of this technique is pretty easy and does not involve a large hardware cost in terms of
surface. However, the existing instruction sets need to be modified to include ways to
set the rounding mode of the first, intermediate rounding to this special round-to-odd
mode. Further, compilers and the whole software ecosystem need to support this not
very common and hence not very portable rounding mode.

— In order to provide the heterogeneous operations, implementers of an IEEE754-2008
floating-point environment may also choose to find a middle ground between full emu-
lation of the operations using integer instructions and modification of their hardware.
The idea is to use standard homogeneous IEEE754-1985 operations together with the
double rounding technique but to detect and correct cases when the double rounding
does not provide the correct heterogeneous rounding. This approach is most attractive
for implementers who need to strive for best portability while still providing best per-
formance. Ideally, all operations required to detect and correct the rounding can be
performed in the floating-point unit of a processor, hence avoiding unnecessary data
movements between the integer and floating-point datapaths.
A first proposal to implement was made in the literature in [183]. The technique is not
fully independent of the integer unit and does require change of the current rounding
mode, which may make it sensible to asynchronous exception handling: its basic
idea is to identify double rounding issues by checking for certain trailing bit patterns
in the higher precision intermediate rounding. This detection is done using integer
instructions. When a possibility of a wrong heterogeneous rounding is identified, the
first, higher precision operation is performed again, in round-toward-zero mode. When
this operation is then found to be inexact, by observation of the so-called inexact flag 8,
the significand produced by the higher precision operation is modified using integer
operations to force its last bit to one. Essentially, rounding-to-odd [21] is simulated in
cases when only this rounding guarantees the second, lower precision rounding to be
the correct heterogeneous rounding.
This approach has several shortcomings: it is not fully independent of integer instruc-
tions, it requires global state (in the form of the IEEE754 rounding mode) to be changed
and it is not easy to make functional in all extreme cases, such as gradual underflow
to a subnormal number. For these reasons, we also worked at solving the problem of
heterogeneous roundings. Our solution reuses and extends a floating-point operation
sequence traditionally used in implementations of elementary functions, the so-called
Ziv rounding test, to detect and correct double roundings for the implementation of the
heterogeneous operations. We will present this work in Section 3.2.2.

8. see Section 2.3 for a definition of the IEEE754 exceptions and status flags
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2.3 A Never Ending Story: Non-Standard Exception Handling

As described in Section 3.1, the IEEE754 Standard defines floating-point operations in
terms of correct rounding of their mathematical counterpart. This means that a floating-point
division operation will behave as if it computed the exact, infinite precision division result
and rounded it to the output floating-point format [117].

This correct rounding rule unambiguously determines the floating-point result of oper-
ations for arguments on the definition domain of the underlying mathematical functions.
However, additional rules are required in the case when an operation is to be evaluated
outside its definition domain [117]. For example, a division of zero by zero is mathematically
undefined.

Similarly, rounding may provoke exceptional cases: if rounding of a real number makes
the exponent grow to large or to small, as it is bounded, the exponent cannot be stored in
the IEEE754 format the rounding targets [117]. In this case, an alternative rounded floating-
point result needs to be produced, as for example infinity for exponent overflow or zero for
complete underflow.

The IEEE754 Standard handles all these exceptional cases through a mechanism [117] that
proceeds in two steps: when an operation is performed on floating-point inputs for which
exceptional case handling is required –these cases are precisely determined by the Standard–
the Standard requires these operations to first signal that exception [117]. The signaling
of an exception then provokes, in a second step, a certain handling. The default handling
consists in replacing the floating-point result by some default floating-point data, in lieu of an
answer. This default answer is precisely defined by the IEEE754 Standard and may be zero
for underflow cases, infinity for overflow cases or division by zero or Not-A-Number (NaN)
for invalid cases such as square root of a negative number [117].

The IEEE754 Standard defines five exceptions that are to be signaled by floating-point
operations, when the corresponding condition arises:

— The inexact exception is signaled whenever a floating-point operation produces a result
that differs from the mathematically exact one as a consequence of rounding. The
inexact exception is sometimes also called the precision exception.

— The underflow exception is signaled whenever a floating-point operation produces a
result that is smaller in magnitude than the in magnitude least normal floating-point
number of the corresponding format.

— The overflow exception is signaled when a floating-point’s operation is larger in magni-
tude than the largest floating-point number of the corresponding format.

— The divide-by-zero exception is signaled for a division of a non-zero floating-point
number by a zero floating-point number. This exception also gets signaled for certain
functions, such as logarithm, when they are evaluated on values for which a “division”
is morally performed.

— The invalid exception is signaled for all operations when they are executed on arguments
for which no meaning can be defined on the extended reals. For example, zero divided
by zero provokes signaling this exception. The exception is also executed for certain
comparisons, when Not-A-Number data is involved and for Not-A-Number data of a
certain kind, called signaling NaNs [117].

When the signaling of an exception is handled by the IEEE754 default exception handler,
a floating-point value to be returned in lieu of an actual result is produced. In order to allow
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the occurring exception to be recorded, the IEEE754 Standard defines five status flags, one for
each of the five possible exceptions, that get set 9 during the default exception handling [117].
The flags are sticky, i.e. if they are raised, they stay up until until they are explicitly cleared.

This default exception handling behavior has one important advantage: under default
exception handling IEEE754 floating-point arithmetic is closed, i.e. for each operation, a
floating-point result, be it just a Not-A-Number, is produced and these default data can also
be consumed by subsequent operations. This is desirable for large scale numerical codes,
where it is often preferable to handle invalid operations in an a posteriori manner instead of
interrupting or even stopping the program for each exceptional case [197]. As the floating-
point flags are provided by the IEEE754 environment, a posteriori handling has even access
to some diagnostic information [117].

In certain cases, the default exception handling behavior of the IEEE754 Standard may
however yield to misleading results or it might be too cumbersome to clear the IEEE754 flags
for some portion of code, run the code, check the flags and perform a posteriori handling
based on these flags. For example, under default exception handling and round-down as
the rounding mode, the expression 1√

𝑥−𝑦 evaluates to −∞ for 𝑥 = 𝑦 [117]. It will hence be
negative for just this case, whereas it stays positive everywhere else.

Even if the default floating-point values to be returned by default exception handling have
been chosen with care by the designers of the IEEE754 Standard, default exception handling
cannot foresee any combination of floating-point states, intended mathematical behavior and
corresponding programs.

The IEEE754 Standard therefore defines alternate ways to handle the signaling of excep-
tions, instead of default exception handling. In its 1985 version, the Standard describes this
alternate way in terms of so-called traps [116]. These traps correspond to interrupt vectors
into which addresses of program subroutines to handle the corresponding exception is to be
loaded. In order to have the processor branch to these subroutines for a certain exception,
the exception must be unmasked, by unsetting a certain bit in a so-called exception mask
register [116]. When describing this mechanism, the Standard does not address any issues
arising to multi-process environments, privilege separation between kernel and user code or
issues due to exception occurring in parallel, e.g. when executing SIMD instructions.

When the IEEE754 Standard was revised in 2008, it was felt that this 1985 description
of alternate exception handling was too hardware-centric and suffered from certain issue,
such as the ones cited above. The 2008 version of the IEEE754 Standard therefore describes
alternate exception handling in terms of an informal API which is supposed to allow the user
to register subroutines as handlers for IEEE754 floating-point exceptions [117]. The Standard
leaves considerations of the exact semantics of such an API to the “languages”, i.e. to the
implementers of the Standard in certain programming environments and languages [117].

In both the 1985 and the 2008 version, the subroutine that can be registered for a certain
IEEE754 exception is supposed to receive the arguments of the floating-point operation that
signaled the exception as well as an indication which type of operation (addition, subtraction,
multiplication etc.) was executed. The subroutine can then raise the IEEE754 flags it judges
necessary to raise and it can provide a floating-point datum that will be used as a result of the
exceptional operation [116, 117].

The 2019 revision of the IEEE754 Standard is not supposed to change anything to the

9. Some exceptions do not provoke setting of a flag in certain cases. The interested reader may consult Clause
7.5 of the IEEE754 Standard [117]
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ways IEEE754-2008 implements alternate exception handling. Since 1985, hence for about 33
years, the IEEE754 Standard has contained this mechanism for alternate exception handling,
which is valuable in certain circumstances, such as expression evaluation or debugging.
When designing hardware, processor vendors spent considerable resources on conceiving
the hardware behind floating-point exception traps, as well as on validating these hardware
implementations. The logic required to implement exception traps in hardware costs area on
chips and power to drive it.

However, for now 33 years, software support for IEEE754 alternate exception handling
has been essentially nonexistent. There are certain highly non-portable sequences, partly in
assembly, that activate IEEE754 traps on certain systems and try to register trap handling
subroutines 10. The GNU C library provides functions to activate generation of a Unix/Posix
signal when an IEEE754 exception is signaled. That Unix signal can be acted upon, how-
ever, there is no support to return alternate floating-point results or to easily inspect which
operations provoked the signal [118].

We find this situation unsatisfactory. If nobody needs support for IEEE754 alternate
exception handling –and we doubt that actually nobody does [132]– support for alternate
exception handling should be removed from IEEE754 in future revisions. This would allow
hardware vendors to stop supporting these exceptions in hardware, which might save energy.
The details of these savings still need to be investigated; see Chapter 6, Section 6.2.1 for our
proposal for future research on this subject.

However, if there are actual use cases for alternate exception handling –and we find that
the debugging argument is extremely compelling– portable user libraries, built on appropriate
kernel support, should be provided on all major systems.

In 2014, we proposed a cooperative research project at the LIP6 laboratory level. The
project was accepted and got financed. Together with researchers in a team working on
Operating Systems, we instructed a Master student to investigate the feasibility of such a
library for IEEE754 alternate exception handling. Unfortunately, the project did not lead to
any results, mainly due to health problems of the student working on the subject. We keep on
working on this matter.

2.4 Other Floating-Point Arithmetic besides IEEE754

IEEE754 is sometimes considered to be the cornerstone of floating-point arithmetic. This
is certainly true up to a certain extent. Other means to perform floating-point arithmetic
however do exist. We shall address them quickly in this Section.

The floating-point environment defined by the IEEE754 Standard [117] and implemented
by most hardware vendors [24] provides satisfactory support for a wide range of appli-
cations, ranging from Computer Games [258] over smaller numerical programs [197] to
super-computing applications [106].

However some applications currently need support for floating-point arithmetic that goes
beyond IEEE754, mainly in terms of available precision [11,79,152,153,259]. Hardware support
for IEEE754-2008 arithmetic typically ends with the binary64 (double precision) format, which
provides 53 bits in its significand [117]. The IEEE754-2008 binary128 format, which would

10. http://www.msg.ucsf.edu/local/programs/IBM_Compilers/Fortran/html/pgs/ug39.
htm

http://www.msg.ucsf.edu/local/programs/IBM_Compilers/Fortran/html/pgs/ug39.htm
http://www.msg.ucsf.edu/local/programs/IBM_Compilers/Fortran/html/pgs/ug39.htm
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provide 113 bits, is mostly implemented in software or software-defined hardware units [176].
No IEEE754 format with more bits in its significand is available on current systems.

As a matter of course, all numerical software that is used to design programs for the
IEEE754 world, such as mathematical libraries, needs to be run at a precision larger than the
ones targeted in the IEEE754 world. For example, it seems hard to imagine how one could
compute a polynomial that would approximate a mathematical function, like exponential,
with an accuracy at or below IEEE754 double precision, using an algorithm, such as the
Remez algorithm, running itself at the same or even lower precision [38].

In order to answer this need for precision exceeding the one provided by the IEEE754
formats [117], several approaches have been proposed, some of which have got into common
usage. First, we may mention the so-called compensation techniques: these approaches run
numerical code using the highest available IEEE754 precision and compensate the round-
off error of each operation by maintaining a correction term for each quantity occurring
in the computation [182]. The error correction term can be computed for the round-off of
the basic operations addition, subtraction, multiplication, division and square root using
so-called Errorfree Transformations [97,138,247,248]. A global compensation term is deduced
of the elementary error term, by integrating it into the global term. This integration step
can be performed after each operation, in which case compensation techniques become
classical doubled-precision arithmetic [110, 138, 236, 247, 248] or only after a certain number of
computation steps [97]. Compensation can be done once, or, if precision is still not sufficient,
several times, i.e. by compensating the error correction term by one more term. This leads to
tripled or quadrupled precision [110, 131, 164, 165, 236].

While these compensation techniques, based on error-free transformations, are able to
extend the precision range of IEEE754, they fail to extend the dynamic of the floating-point
environment, i.e. the available exponent range. Typically, the error-free transformations
for addition work as long as no spurious overflow occurs [18, 138]. They also work in the
underflow domain, as floating-point addition becomes naturally exact there [197]. Error-
free transformations for multiplication however suffer severely from underflow or overflow.
They are clearly not “errorfree” in general if underflow occurs. These limitations make
the use of errorfree transformations sometimes cumbersome, in particular when the whole
exponent range must be covered for input and output. In Section 3.6, we shall use errorfree
transformations ourselves but as we shall see, most of the difficulty of our algorithm will
stem from properly avoiding spurious underflow and overflow.

A second approach to increasing precision is using so-called multiple precision floating-
point libraries. The most prominent one among such libraries is the GNU MPFR library 11 [86].
These multiple precision libraries emulate high precision floating-point arithmetic by repre-
senting floating-point numbers as data structures containing an integer exponent field and a
long, high-precision integer significand. This significand is itself a long integer represented
as an array of machine integers that form the digits of the long integer in a high radix, cor-
responding to the machine word length, such as 232. Asymptotically optimal long integer
algorithms are used on these significands to implement the basic operations: Karatsuba and
Toom-Cook multiplication, FFT-based multiplication etc. [86]

In this work, we try to propose yet another approach to increasing the precision, besides
compensation techniques based on IEEE754, which have the disadvantage of not widening
the exponent range, and asymptotically optimal multi-precision. In Section 3.5, we shall

11. http://www.mpfr.org/

http://www.mpfr.org/
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present libwidefloat, which is supposed to address a slightly larger precision range than
what IEEE754 offers, typically up to 512 bits, as well as an extended exponent range. In
contrast to MPFR, our libwidefloat, as we shall see, does not offer dynamically adaptable
precision, which has the advantage of leveraging compiler optimization for static memory
access.

In terms of internal representation of floating-point numbers, these multiple-precision
libraries are incompatible with the IEEE754 Standard. As a matter of fact, the IEEE754
does not define arbitrary, wide-precision floating-point numbers. The multiple-precision
libraries however often follow the IEEE754 Standard in terms of special values, such as signed
infinities, signed zeros, Not-A-Number data, as well as in terms of rounding-modes. Even
floating-point flags, raised as a result of default handling of exceptions, are supported [86].
The MPFR library also honors the correct rounding principle: all operations behave as if the
mathematically exact result were computed first and then rounded, even if the operation
involves computing a transcendental function [86].

However, the multiple-precision libraries, in particular MPFR, allow for a richer floating-
point arithmetic than plain IEEE754. All MPFR floating-point variables have dynamically
adjustable precision, both at variable initialization time and at any later step in an algorithm.
Variables with different precisions can freely be mixed when used as operands or results
of operations [86]. It becomes hence possible to write algorithms that adapt their precision
in order to always guarantee a certain output accuracy. In other words, multiple-precision
enables floating-point arithmetic with a priori error bounds. We shall heavily use this property
for our work presented in Chapter 5 of this thesis.

This additional freedom provided by dynamic multiple-precision comes at a price, though.
While coding with MPFR is almost like coding in assembly –a function must be called
per elementary floating-point operation– analyzing the global error of a multiple-precision
algorithm, in terms of the dynamically adjusted precision, is challenging.

As execution performance is anyway affected by the fact that multiple-precision is es-
sentially realized in software, it is reasonable for most applications to switch from plain
multiple-precision floating-point arithmetic to multiple-precision interval arithmetic. In
interval arithmetic, quantities, as they are stored in variables, are represented not just by
single approximated floating-point values but with intervals in which that mathematically
exact quantity is guaranteed to lie [5]. Basic interval arithmetic can be implemented by
representing both endpoints of an interval by two floating-point numbers; these floating-
point numbers can be multiple-precision floating-point variables. All operations are then
performed with rounding modes chosen in such a manner that roundoff error might enlarge
the width of the intervals but never induce any wrong result with respect to the guarantee
that the mathematically exact value stays contained in the respective interval [5, 217].

The MPFI library 12 [217] implements such a multiple-precision interval library, where all
intervals are represented with multiple-precision floating-point numbers as endpoints. MPFI
allows the dynamic roundoff-error issue to be solved by having the computer performing
the error analysis dynamically as the algorithm runs. When the final interval result is too
inaccurate, the algorithm can be re-run with increased precision in an attempt to increase the
output accuracy [217].

However, coding with MPFI still is a tedious process: again, a function call must be
made per operation. This means that expression trees, such as 𝑎 + sin 𝑏 + 17 × 𝑒𝑐, must be

12. https://gforge.inria.fr/projects/mpfi/

https://gforge.inria.fr/projects/mpfi/
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traversed manually and operations coded one by one. In particular for use-cases where
numerically programs are short-lived as they are written just to design or analyze other
floating-point programs, this is too tedious. An enhanced, rigorous, dynamic and multiple-
precision numerical tool, with automatic precision adaptation and an easy-to-use interface, is
required.

Sollya 13, which we develop, is intended to be such a tool [41]. Sollya provides the
user with an interface that allows for definition of composed functions as expression trees
which can be evaluated to variable output accuracy. The tool automatically adapts compute
precision, using a mix of MPFR and MPFI to realize this goal. Sollya is rigorous through
interval arithmetic and warns the user in cases when functional expressions cannot be
evaluated accurately at particular points, essentially where they are not well defined. Sollya
is tightly coupled to IEEE754 floating-point arithmetic as it allows roundings to IEEE754
formats, such as single or double precision, to be simulated where required. Sollya comes
with a small programming language but can also be exploited through a C language interface,
for which bindings to higher level languages such as Python exist 14. As we consider Sollya to
be just a tool that we give ourselves –and the community– for our research but not necessarily
the focus of our research, and, in particular, as we see in Sollya a mere translation, into code,
of some of our algorithms, we refrain from discussing Sollya in detail in this work.

13. http://www.sollya.org/
14. https://gitlab.com/metalibm-dev/pythonsollya/

http://www.sollya.org/
https://gitlab.com/metalibm-dev/pythonsollya/




CHAPTER 3
Software to Support an Enhanced

Floating-Point Environment

J. Palmer had hoped that the [x87] coprocessor would
have everything on one chip. It would have [...] the
transcendental function library, the math library [...]
so, when you plugged it in, everybody would get the
same [...] results as everybody else, regardless of the
programming language they fancied.

William Kahan, interviewed by Th. Haigh

3.1 Introduction

The IEEE754-2008 Standard states it pretty clearly: An implementation of a floating-point
system [...] may be realized entirely in software, entirely in hardware, or in any combination
of software and hardware. [117]. It is the software aspect behind floating-point arithmetic
that often gets forgotten or unduly neglected. This is what we also want to present to the
reader in this Chapter: what is needed to support at least the mandatory part of IEEE754-2008
from a software perspective, even if we intend to base this software on existing floating-point
hardware? Are there means to extend the scope of the IEEE754-2008 Standard, to make it
more complete, even if some of these novel operations end up being useful but too anecdotal
to actually invest into adding hardware? The IEEE754-2008 Standard is written in terms of
“operations”. Where does an operation stop being an operation and becomes an algorithm?
When is the opposite true: can’t we propose basic algorithms such as some basic linear algebra
operations that are so common that subsequent revisions of IEEE754-2008 could include them
as novel “operations”?

This Chapter is organized as follows: in Section 3.2, largely extending our publications
in [66, 161], we describe our work on the software side of the existing IEEE754-2008 Standard.
In Sections 3.3 and 3.4, we try to make our case for extending the Standard in a way that
would allow binary and decimal floating-point arithmetic to be freely mixed. These Sections
are based on [28,125]. In Section 3.5, based on [156], we then extend the scope of floating-point
arithmetic with work on extended precision arithmetic. In Section 3.6, we report our findings
on higher-level operations, as we proposed them in [101]. We will give a conclusion for this
Chapter in Section 3.7.
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3.2 Supporting the Mandatory Part of IEEE754-2008

Before we set out to proposing extensions to future editions of the IEEE754 Standard,
we will look on what we need and are able to do to support the current revision, IEEE754-
2008 [117]. In Section 3.2.1, we will shortly describe the libieee754 support library we
have started to develop; this Section is based on [161]. In Section 3.2.2, based on [66], we
will look into a way to “recycle” Ziv’s rounding test, which was developed in a different
context, for the implementation of the heterogeneous operations in IEEE754-2008. Finally,
in Section 3.2.3, we will briefly discuss ways to implement IEEE754-2008 correctly rounded
conversion of arbitrary length decimal character sequences to binary floating-point without
any dynamic memory allocation. The algorithm we propose has been described by one of
the Ph.D. students we advised in her Ph.D. manuscript [145]; we shall present it slightly
differently in that Section.

In order to set a correct framing, let us precisely state what we understand by supporting
IEEE754-2008. The IEEE754 Standard leaves a large amount of freedom to implementer’s
of the Standard in terms of what is called “mandatory” to support the Standard. An im-
plementation can be achieved in hardware, software or a combination of both [117]. In
order to claim compliance, an implementation needs to support at least one IEEE754-2008
format in at least one of the two possible radices 2 and 10. Hence at least support for the
binary32 format is required [117]. For this given format, all mandatory operations need to
be implemented, which sum up to 83 operations [117]. These mandatory operations include
addition, subtraction, multiplication, division etc. but also operations like conversion from
and to character sequences. They do not include support for mathematical functions, like exp.
Those operations are just recommended by the Standard for implementation [117].

If only one format is implemented, there is no trouble with heterogeneous operations,
as those operations mix two different formats in input and output. However, as per the
expectations already set by IEEE754-1985, it is common to consider that at least the binary32
and the binary64 format need to be implemented for reasonable support of IEEE754. We shall
hence also consider that at least this level of support is required. In this case, however, we
need to support heterogeneous operations. The overall number of mandatory operations we
need to support hence increases to 354 operations [117].

Out of these 354 operations that are mandatory for support of binary32 and binary64 in
IEEE754-2008, the vast majority directly maps either to hardware instructions offered by most
of the current systems, may they come from Intel, ARM or other vendors, or, by conversion
of arguments for example, to other operations that are also required [117]. At the end of the
day, only 8 operations are non-trivial to implement:

— correctly rounded heterogeneous operations for +,−,×, /,√ and FMA with all argu-
ments being in binary64 format and the output being in binary32 format,

— conversions from decimal character sequences to binary32 and binary64.

Someone might argue that the FMA operation is not always supported in hardware and
that support for it may require using software emulation. This is certainly true. However, we
consider this software emulation to be easy to design as it can use state-of-the-art principles,
such as the ones we shall describe in Section 3.5 for extended precision arithmetic.

Similarly, we might argue that the mandatory part of IEEE754-2008 includes operations
like conversions from binary floating-point to decimal character sequences or conversions
from hexadecimal character sequences to binary floating-point, none of which is supported in
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hardware and none of which is completely trivial to implement. Once again, these operations
can however tackled with state-of-the-art approaches. For example, for conversion from
binary floating-point to decimal character sequences, the approach described in [49] is helpful.
We shall reuse that approach for other means, viz. to perform exact mixed-radix comparisons,
in Section 3.3.

A support library for IEEE754-2008 hence has to go the tedious route of implementing
354 functions. However, the interesting part is in 8 operations, which we shall discuss in
Sections 3.2.2 and 3.2.3.

3.2.1 A Support Library for IEEE754-2008: libieee754

The level of support for IEEE754-2008 varies, in particular depending on what one might
call “support”. The IEEE754-2008 formats binary32 and binary64 are of course bound by most
compilers (like gcc, icc or clang) to the existing C-language float and double datatypes
and most IEEE754-2008 operations are available through infix operators like +, * or (builtin-)
functions like sqrt, declared in math.h. However, to our knowledge, there is no compre-
hensive library supporting in on single place and with a clear, common calling interface all
mandatory binary floating-point IEEE754-2008 operations but Intel’s proprietary libbfp754
library 1. Intel ships this library as a compiled binary with its compilers.

In order to provide an open-source variant of that Intel proprietary library and, more
importantly, to give us a test-bed for the design of algorithms for heterogeneous operations,
like we will discuss then in Section 3.2.2, or our character sequence comparisons described in
Section 3.2.3, we started work on a library which we call libieee754. Access to the library
is granted at

https://gitlab.com/cquirin/libieee754.

We have published on that library with [161].
The library is supposed to implement all the 354 operations IEEE754-2008 mandates for

binary floating-point arithmetic in both binary32 and binary64 formats. While the library
should be reasonably fast, speed should not be the main purpose but 100% standard compli-
ance. All operations support all rounding modes and set all flags as required by IEEE754-2008.
The library is reentrant as there is no global state other than the global state foreseen by the
standard.

The library is not fully complete, in particular, the testing functionality is under-developed.
The maintenance cost of the library is relatively high, for a project that is supposed to be
contributed to mostly by graduate students.

However, as already stated, the library contains code implementing our ideas for the
heterogeneous operations, which we are going to discuss in the next Section.

3.2.2 Ziv’s Rounding Test Reused To Implement Heterogeneous Operations

Several approaches have been proposed for the implementation of the heterogeneous
operations in IEEE754-2008. Again, these operations take arguments in one format, say
binary64, and return their result in a lower precision format, such as binary32. As per IEEE754-
2008, there must not be more than one rounding and this rounding must be performed as if
the operation were executed with infinite precision and then rounded once [117].

1. https://software.intel.com/en-us/node/524476

https://gitlab.com/cquirin/libieee754
https://software.intel.com/en-us/node/524476
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A naive approach would be to nevertheless perform two roundings and to hope for the
best. For a binary64 × binary64 addition yielding a binary32 format, the corresponding
algorithm would read as follows. Let be 𝑥, 𝑦 ∈ F11

53 the operands and assume that we want
to compute 𝑤 = ◇24(𝑥 + 𝑦), where 𝑤 ∈ F8

24. Inhere, ◇𝑘 ∈ {∘𝑘,O𝑘,M𝑘, ◁▷𝑘} is any of the
IEEE754-2008 roundings to a precision of 𝑘 bits (and the corresponding, implicitly assumed
IEEE754-2008 exponent range). The naive code reads:

𝑧 ← ◇53(𝑥+ 𝑦)

𝜁 ← ◇24(𝑧)
𝑤 ← 𝜁

As a matter of course, as we have already seen in Section 2.2.2, this naive is not correct, as
even though 𝑤 ∈ F8

24 holds, it is not the correct rounding of 𝑥+ 𝑦 to binary32 for rounding-to-
nearest, ◇ = ∘, on which a double rounding issue occurs.

Problem statement

However, we may want to use this incorrect, naive algorithm for the heterogeneous
operations as a basis to develop a correct algorithm. This approach is sensible: while double
rounding issues may occur, they occur only seldom for well-distributed inputs 𝑥 and 𝑦. In
particular, a double rounding issue occurring requires the first binary64 rounding that yields
𝑧 to be to a binary32 midpoint. These midpoints are of course rare.

We shall therefore set out to design an algorithm based on the naive one that

— starts by detecting whether a double rounding issue may occur on a given input 𝑥, 𝑦
and that

— is able to correct the rounding so that 𝑤 becomes equal to the correct rounding ◇24(𝑥+𝑦).

For short, we want to replace the trivial copy 𝑤 ← 𝜁 of the last line of the algorithm by a
detection and correction sequence.

Let us now observe that a similar problem arises in the implementation of correctly
rounded elementary functions [165,196]. In order to achieve a correct rounding for an elemen-
tary function, which is transcendental and which we can do nothing about but approximate
it, we need to have a way of checking whether an approximation to that function is already
accurate enough to allow for correct rounding. Our heterogeneous operation problem looks
different but is quite similar: in the naive algorithm, 𝑧 is a pretty accurate approximation to
the exact result. We know that for round-to-nearest, ◇ = ∘ there exists 2 𝜀 ∈ R, bounded by
|𝜀| 6 2−53 such that

𝑧 = (𝑥+ 𝑦) · (1 + 𝜀) .

Rounding such an approximation to the exact, infinitely precise value 𝑥+𝑦 should be possible
in most cases: the approximation is accurate up to a relative error of 2−53 and we want to
round to a binary32, which has 24 bits of precision. In other words, we have 29 “guard bits”.

2. Subnormal rounding where such relative-error 𝜀 would of course not exist is not an issue here: if the first,
binary64 rounding was to a subnormal number, the second binary32 rounding would be completely underflowed
as the binary32 exponent range is way smaller than the binary64 one.
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Heterogeneous Operations Seen as A “Main+Correcting” Term Problem

The step towards designing a correctly rounded algorithm is to separate the bits in the
candidate rounding 𝜁 from the guard bits in 𝑧. This is actually pretty easy: as a matter of
course, 𝜁 ∈ F8

24 is exactly representable as a binary64 number, too. The rounding of 𝑧 to 𝜁
being towards a binary32, unless it gradually or completely underflows or overflows, will not
affect 𝑧 by more than 2−24 in relative error. If gradual binary32 underflow occurs, the error
will always be less or equal to half the subnormal that this binary32 rounding yields. Hence
we have in all cases:

1

2
|𝑧| 6 |𝜁| 6 2 |𝑧| .

The condition of Sterbenz’ lemma [238] is hence satisfied and we can modify our algorithm
as follows:

𝑧 ← ◇53(𝑥+ 𝑦)

𝜁 ← ◇53 (◇24(𝑧))
𝛿 ← ◇53(𝑧 − 𝜁)

𝑤 ← ◇24(𝜁).

For this algorithm, we can state the following properties:

𝑧 = (𝑥+ 𝑦) · (1 + 𝜀) with |𝜀| 6 2−53

𝜁 + 𝛿 = 𝑧

◇24(𝜁) = ◇24(𝑧).

This means we have an instance of a problem where some approximation 𝑧 of an exact
quantity, for instance 𝑥+𝑦, is available and this approximation is split onto two floating-point
variables 𝜁 and 𝛿. Out of these two, 𝜁 is a main term for which we want to determine whether
it is equal to the correct rounding of the exact quantity. The other term 𝛿, is a correction term,
of this candidate rounding 𝜁, added in order to obtain the accurate approximation 𝑧. In some
sense, 𝛿 holds the guard bits of the accurate approximation of the exact result 𝑥+ 𝑦.

Ziv’s Rounding Test

Ziv’s rounding test is the state-of-the-art solution to the problem we are confronted with:
an exact quantity can only be approximated, it is store as an unevaluated sum of a main
and a correction term and we need to decide whether the main term corresponds to the
correct rounding of the exact quantity. The test has been invented by Ziv [264]; we have
published on some improvements on how to determine a certain constant that is required for
the implementation of the test [66].

The basic idea of Ziv’s rounding test goes like this: we assume that the rounding mode
is round-to-nearest. The main term, in our case 𝜁, is at a floating-point number that is
a candidate rounding of some exact quantity, for instance 𝑥 + 𝑦. From that main term a
correcting term 𝛿 points towards the approximation 𝑧 = 𝜁 + 𝛿 of the exact quantity 𝑥 + 𝑦.
The candidate rounding is the correct one if the approximation 𝜁 + 𝛿 = 𝑧 = ◇53(𝑥+ 𝑦) is not
around the midpoint of the two floating-point numbers straddling the exact result; it is at
the midpoint that the rounding changes. The main term is one of these two floating-point
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𝑒× 𝛿

𝜁 𝜉

𝛿

Figure 3.1 – Ziv’s rounding test

numbers, the other one is the floating-point number strictly below or above, depending on
the direction 𝛿 points to.

Now, as Figure 3.1 illustrates, if 𝛿 makes the approximation 𝑧 being close to this midpoint,
a small relative increase 𝑒 > 1 of 𝛿 will make 𝜁 + 𝑒 𝛿 go beyond the midpoint and make
the rounding 𝜉 = ◇24(𝜁 + 𝑒 × 𝛿) change with respect to 𝜁. In other words, if 𝑧 is close to
the midpoint, 𝛿 will be, in magnitude, just below or equal to 1/2 ulp24(𝑧). Increasing 𝛿 by
multiplying it by 𝑒 > 1 will make 𝛿 larger in magnitude than 1/2 ulp24(𝑧), and the rounding
of 𝜁 + 𝑒× 𝛿, namely 𝜉 = ◇24(𝜁 + 𝑒× 𝛿) will be different from 𝜁.

On the other hand, if the constant 𝑒 is correctly chosen with respect to the accuracy of 𝑧,
whenever 𝜉 = 𝜁, the approximation 𝑧 and hence the exact value 𝑥+ 𝑦 is far enough from the
midpoint and 𝜁 is already the correct rounding. Figure 3.1 illustrates this.

Input: 𝑥, 𝑦 ∈ F11
53 two binary64 inputs, 𝑒 > 1 an appropriate Ziv’s rounding test constant

Output: ◇24(𝑥+ 𝑦) the binary32 correct rounding of 𝑥+ 𝑦
𝑧 ← ◇53(𝑥+ 𝑦) ;
𝜁 ← ◇53 (◇24(𝑧)) ;
𝛿 ← ◇53(𝑧 − 𝜁) ;
𝜎 ← ◇53(𝑒× 𝛿) ;
𝜏 ← ◇53(𝜁 + 𝜎) ;
𝜉 ← ◇53 (◇24(𝜏)) ;
if 𝜁 = 𝜉 then

𝑤 ← ◇24(𝜁);
return 𝑤;

end
/* Correct rounding not possible, compute correct rounding */
return . . . ;

Algorithm 1: Candidate algorithm for heterogeneous addition

Unless an FMA operation is available, the quantity ◇24(𝜁 + 𝑒 × 𝛿) cannot be computed
with one rounding ◇24 as 𝑒 × 𝛿 needs evaluating. An additional error here is however not
an issue if it is properly accounted for when determining the constant 𝑒. The details on how
to determine 𝑒 properly can be found in [66]. Similarly, an additional error due to double
rounding when determining the quantity 𝜉 to compare 𝜁 to is not an issue as long as the
error gets accounted for in 𝑒. Assuming 𝑒 as correctly determined, we can hence modify our
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algorithm again so that it becomes Algorithm 1.
Algorithm 1 is the first algorithm that returns the correct rounding for an heterogeneous

addition operation - when it does return something. The algorithm is still incomplete. In
cases when 𝜁 cannot be shown to be the correct rounding, no answer has been determined,
yet.

Heterogeneous Operations: An Algorithm

Input: 𝑥, 𝑦 ∈ F11
53 two binary64 inputs, 𝑒 > 1 an appropriate Ziv’s rounding test constant

Output: ◇24(𝑥+ 𝑦) the binary32 correct rounding of 𝑥+ 𝑦
𝑧 ← ◇53(𝑥+ 𝑦) ;
𝜁 ← ◇53 (◇24(𝑧)) ;
𝛿 ← ◇53(𝑧 − 𝜁) ;
𝜎 ← ◇53(𝑒× 𝛿) ;
𝜏 ← ◇53(𝜁 + 𝜎) ;
𝜉 ← ◇53 (◇24(𝜏)) ;
if 𝜁 = 𝜉 then

𝑤 ← ◇24(𝜁);
return 𝑤;

end
𝜇← ◇53 (1/2× ◇53 (𝜁 + 𝜉));
if 𝑧 ̸= 𝜇 then return ◇24(𝜁);
𝛼1 ← ◇53(𝑧 − 𝑥);
𝛼2 ← ◇53(𝑧 − 𝛼1);
𝛿1 ← ◇53(𝑦 − 𝛼1); 𝛿2 ← ◇53(𝑥− 𝛼2);
𝜀← ◇53(𝛿1 + 𝛿2) ;
if ((𝜀 = 0) ∨ ((𝜀 > 0)xor (𝛿 > 0))) then return ◇24(𝜁);
return ◇24(𝜉);

Algorithm 2: Elaborated candidate algorithm for heterogeneous addition
In order to complete the algorithm, we first need to find a way to refine the answer

provided by Ziv’s rounding test. That test of course does not yield false positives in the
sense that it will not deem an instance to be correctly rounded when it is not. However,
it does classify some instances as might not be the correct rounding while 𝜁 is the correct
rounding. For this refinement, we need to express the decisive quantity, the midpoint 𝜇 of the
two floating-point numbers straddling the exact result 𝑥+ 𝑦 in the algorithm. We can then
compare 𝑧 to this midpoint.

Let us first observe that the midpoint 𝜇 of the two floating-point numbers in the less
precise format we eventually round to can be expressed exactly in the more precise format
we use for the first rounding. As a matter of fact, a midpoint in a floating-point format of 𝑘
bits of precision holds on 𝑘 + 1 bits. The IEEE754-2008 formats are such that the next more
precise format is always at least 1 bit more precise than the preceding one. For binary32 and
binary64, the difference in precision is even 29 bits [117].

It is then important to show that if they are unequal, the two values 𝜁 and 𝜉 as they
get computed by Algorithm 1 are consecutive floating-point numbers in the less precise
floating-point format, for instance binary32 with a precision 𝑘 = 24. It is easy to see that they
hold on 𝑘 = 24 bits. The fact that they are consecutive if unequal can be established with an
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elaboration of the following argument: the error 𝛿 between 𝑧 and 𝜁 is bounded in magnitude
by half an ulp24 of 𝜁 3. If Ziv’s rounding constant 𝑒 > 1 > 0 is then bounded by 3/2, which is
always the case and easy to establish [66], 𝜎 is bounded in magnitude by 3/4 ulp24(𝜁). As it is
very easy to show that 1/2 ulp53(𝜏) 6 2−29 ulp24(𝜏), the difference between 𝜏 and 𝜁 is hence
strict bounded in magnitude by ulp24(𝜁) 4, the rounding ∘24(𝜏) will never be beyond the 24
bit floating-point number consecutive to 𝜁 in the direction of 𝛿. Hence 𝜁 and 𝜉 are either equal
or consecutive floating-point numbers in the less precise format.

Assuming now that 𝜁 and 𝜉 are unequal, it is hence possible to express the midpoint 𝜇
between 𝜁 and 𝜉 as 𝜇 = 1/2 (𝜁 + 𝜉). As 𝜇 is representable in the more precise format, so is
2𝜇 5. Hence the rounding ∘53(𝜁 + 𝜉) is errorfree. We can therefore actually compute 𝜇 as
𝜇 = ∘53 (1/2× ∘53 (𝜁 + 𝜉)) without running into trouble as we would for regular floating-
point averages [18].

It is pretty easy to show that a double-rounding issue can come up in the implementation
of heterogeneous operations only if the first rounding in the wider format, for instance the
rounding 𝑧 = ∘53(𝑥 + 𝑦), exactly goes to a midpoint in the less precise format. In all other
cases, as this first rounding is a correct one, the bits following the bit marking the midpoint
between the two floating-point numbers straddling the two less precise format floating-point
numbers around 𝑥+ 𝑦 serve as sticky bits [77]. We can hence refine Ziv’s rounding test with
an additional test that returns the correct result ∘24(𝜁) in all cases when 𝑧 is different from 𝜇,
the midpoint.

If, in contrast, the first rounding that yielded 𝑧 was to the midpoint 𝜇, a double-rounding
occurred in the second rounding that yielded 𝜁 iff the signs of the errors 𝛿 and the error
𝜀 = (𝑥+ 𝑦)− 𝑧 are the same and the first rounding yielding 𝑧 was inexact. A double-rounding
occurring implies that both roundings 𝑥 + 𝑦 yielding 𝑧 and 𝑧 yielding 𝜁 go into the same
direction, which is equivalent to the signs of 𝛿 = 𝑧 − 𝜁 and 𝜀 = (𝑥+ 𝑦)− 𝑧 = (𝑥+ 𝑦)− 𝜁 − 𝛿
having the same sign. Fortunately, the error 𝜀 can be computed exactly in floating-point
arithmetic using the TwoSum sequence [71, 97, 192]. We can hence give a new candidate
algorithm for an heterogeneous addition with Algorithm 2.

Unfortunately, Algorithm 2 still does not cover all possible cases of IEEE754-2008 het-
erogeneous addition. Until now, we have assumed that the exponent ranges for both the
wider format, binary64, and the less precise format, binary32, were unbounded. This is
clearly not the case. We must make sure that overflow and binary32 underflow are correctly
handled by our algorithm. Further IEEE754-2008 also defines the behavior of operations on
non-finite inputs, i.e. on infinities, and for NaN inputs. More importantly, IEEE754-2008
not only defines the floating-point results of operations but also their side-effects in terms of
IEEE754-2008 exceptions, resp. the raising of IEEE754-2008 flags [117]. We must make sure
that our algorithm works in all these cases.

Overflow handling requires us to address one double-rounding case in particular: when
|𝑧| is equal to the largest finite binary32 number plus 1/2 ulp24 of that largest binary32 number,
i.e. if it is equal to the 24 bit floating-point “midpoint” that we would observe if the exponent
range were unbounded, our current way of computing 𝜁 = ∘53(∘24(𝑥+ 𝑦)) yields to infinity
as ∘24(𝑥 + 𝑦) overflows as per IEEE754-2008 [117] whereas for the correct working of our

3. The actual proof, which is too lengthy to be included inhere, needs to distinguish between the case when 𝜁
is an integer power of 2 and 𝛿 is of opposite sign of 𝜁 –in which case the bound is 1/4 ulp24(𝜁)– and the other,
regular case.

4. resp. 1/2 ulp24(𝜁) for the integer-power-of-2 case
5. Assuming unbounded exponent, which we can as will be shown below.
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algorithm the 24 bit floating-point number just above 𝑥+ 𝑦 ought to be stored in 𝜁. We can
address this issue with an additional test and some scaling. A second test then can filter all
cases when |𝑧| is strictly greater than the “midpoint” following the largest finite binary32
number, as no double-rounding issue can affect the rounding towards infinity anymore.

The handling of NaN inputs is relatively easy. The same applies to infinities. The IEEE754-
2008 rules for NaN and infinity handling are the same for all formats. We just need to make
sure to return 𝜁 in such a case. This is easy to handle as we can add tests in the existing
branching statements to make this happen.

Input: 𝑥, 𝑦 ∈ F11
53 two binary64 inputs, 𝑒 > 1 an appropriate Ziv’s rounding test constant

Output: ◇24(𝑥+ 𝑦) the binary32 correct rounding of 𝑥+ 𝑦 and all flags set correctly
𝑧 ← ◇53(𝑥+ 𝑦) ;
𝑧 ← |𝑧| ;
if 𝑧 = 2128 · (1− 2−25) then 𝜁 ← ◇53 (2× ◇53(◇24(◇53(1/2× 𝑧)))); else 𝜁 ← ◇53 (◇24(𝑧));
𝜁 ← |𝜁| ;
if ((𝜁 ̸= 𝜁) ∨ (𝑧 > 2128 · (1− 2−25)) then return ◇24(𝜁);
𝛿 ← ◇53(𝑧 − 𝜁) ;
𝜎 ← ◇53(𝑒× 𝛿) ;
𝜏 ← ◇53(𝜁 + 𝜎) ;
𝜉 ← ◇53 (◇24(𝜏)) ;
if ¬(𝜁 ̸= 𝜉) then

if ((𝛿 = 0) ∧ (𝜁 6 2−126)) then
if (|𝑥| > |𝑦|) then 𝑎← 𝑥; 𝑏← 𝑦; else 𝑎← 𝑦; 𝑏← 𝑥;
𝑡← ◇53(𝑧 − 𝑎) ;
if 𝑡 ̸= 𝑏 then

𝑑1 ← ◇53(𝑧 ×
(︀
1 + 2−28

)︀
) ;

𝑑2 ← ◇24(𝑑1);
end

end
𝑤 ← ◇24(𝜁);
return 𝑤;

end
𝜇← ◇53 (1/2× ◇53 (𝜁 + 𝜉));
if 𝑧 ̸= 𝜇 then return ◇24(𝜁);
𝛼1 ← ◇53(𝑧 − 𝑥);
𝛼2 ← ◇53(𝑧 − 𝛼1);
𝛿1 ← ◇53(𝑦 − 𝛼1); 𝛿2 ← ◇53(𝑥− 𝛼2);
𝜀← ◇53(𝛿1 + 𝛿2) ;
if ((𝜀 = 0) ∨ ((𝜀 > 0)xor (𝛿 > 0))) then return ◇24(𝜁);
return ◇24(𝜉);

Algorithm 3: Algorithm for IEEE754-2008 heterogeneous addition
The handling of underflow is on the one hand easy but requires care on the other hand.

It is easy as Algorithm 2 already works for underflow cases. Underflow cases of the more
precise format, binary64, are so way beyond the complete underflow threshold for the less
precise format, binary32, that the do not require additional tests. Ziv’s rounding test will
always make 𝜁 be returned. Underflow cases in the less precise format, binary32, are no
different from all other normal cases, as Ziv’s rounding test and all logic to compute the



46 Chapter 3. Software to Support an Enhanced Floating-Point Environment

midpoints are executed in binary64 floating-point arithmetic. Underflowed binary32 cases
are just normal numbers in binary64. On the other hand, a phenomenon previously unknown
occurs for IEEE754-2008 heterogeneous addition: unlike homogeneous addition results [197],
underflowed heterogeneous addition results can be inexact. As we want to get the IEEE754-
2008 flags get set correctly, we need to address this point. As it stands, Algorithm 2 will
return correctly rounded results for underflowed cases but it will not set the underflow nor
inexact flag for cases when the second rounding producing the binary32 number 𝜁 out of
the binary64 candidate 𝑧 is exact. IEEE754-2008 specifies that the underflow flag be raised
for an operation that produces a result below the underflow threshold only if that operation
was inexact at the same time. The inexact flag is raised, too [117]. In cases an underflowed
IEEE754-2008 operation is exact, for default exception handling, the underflow flag is not
set. For our heterogeneous algorithm, we hence need to add special handling to detect this
case and to set the underflow flag, typically by executing a dummy IEEE754-2008 operation
that produces an inexact underflowed result, which we throw away. Such a test is readily
added: the case can only occur for 𝛿 = 0, |𝜁| below the underflow threshold and the rounding
𝑧 = ∘53(𝑥+ 𝑦) being inexact.

Algorithm 3 includes all the changes required for the correct handling of overflow, un-
derflow with flag setting, infinities and NaN inputs. Besides correctly setting the flags for
underflowed cases, it sets all the required flags and only the required flags correctly. The
proof that this part of its behavior is correct would go beyond the purpose of this document.
The proof essentially requires considering all cases of inputs that IEEE754-2008 requires to
raise a certain flag and to exhibit an operation in the algorithm that raises the flag as well as
going over all operations in the algorithm, considering the cases when they do raise flags and
ruling out the possibility that spurious flags get erroneously raised.

Directed rounding modes

IEEE754-2008 defines several rounding modes, such as round-to-nearest or the directed
rounding modes like round-towards-infinity [117]. As a matter of course, the IEEE754-
2008 heterogeneous operations need to be supported in all of these rounding modes. In the
discussion that precedes, we have silently assumed the rounding mode to be round-to-nearest.
This is also the only rounding mode in which Ziv’s rounding test classically works [66]. An
algorithm to support for the heterogeneous operations in all rounding modes might hence
proceed as follows: first, test the rounding mode, if the rounding mode is round-to-nearest,
execute Algorithm 3, otherwise execute another algorithm for the directed rounding modes.

However, this scheme would be slow: access to the prevailing rounding mode is extremely
slow on most architectures [162, 230]. The fall-back technique that consists in executing a
couple of dummy operations and determining the prevailing rounding mode from their
results is contradictory to our requirement that the final algorithm should only raise the
flags required by IEEE754-2008: the inexact flag would be spuriously raised by the dummy
operations. Further, that other algorithm to be executed for the directed rounding would need
to be implemented, even if it is pretty small. As a matter of fact, no double-rounding issue
may occur for the directed rounding modes: in the directed roundings modes, all rounding
boundaries are at the floating-point numbers itself and all lesser precision floating-point
numbers are included in the wider format’s floating-point number set.

This latter point also means that an algorithm for the directed rounding modes heteroge-
neous operations is included in the first lines of Algorithm 3. In the directed rounding modes,
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𝑤 = ◇24(𝜁) always is the correct heterogeneous rounding. If we could make Ziv’s rounding
mode always decide that rounding is possible in the directed rounding modes so that 𝑤 gets
returned, our algorithm would work in any rounding mode.

As it turns out, Algorithm 3 is already agnostic to the rounding mode; no further modi-
fication is required. As a matter of course, Ziv’s rounding test does work in the sense that
it would detect double-roundings when it is executed in a directed rounding mode. But as
in the very particular case we are considering there are no double-roundings, when Ziv’s
rounding test classifies an instance as “correct”, this rounding-test-answer is not sensible, but
as 𝑤 is the correct rounding nevertheless, the algorithm stays correct.

Turned differently, Algorithm 3 is correct also for the directed rounding modes, unless the
line where ◇24(𝜉) is returned instead of 𝑤 = ◇24(𝜁). It is easy to see that this is not possible
for the directed rounding modes: the signs of 𝛿, the absolute error of a rounding, and 𝜀, the
absolute error of another rounding, are always the same if the rounding mode is directed and
both rounding operations are executed with the same directed rounding mode.

The reader might at this point raise the issue that making the last statement, we have
considered that 𝜀 is computed correctly – with a TwoSum sequence that, classically, does not
work for the directed roundings [197]. The reader is of course right; however in the very
particular case the TwoSum sequence is used in Algorithm 3 –only when 𝑧 is equal to the
midpoint 𝜇– at least the sign of 𝜀 is correct even though the TwoSum sequence is executed in
an improper rounding mode. And the sign of 𝜀 is the only piece of information that needs
to be correct. A formal proof of this last statement would go far beyond the purpose of this
document; we shall note that a recent result by Boldo et al. also implies the correctness of
Algorithm 3 for the directed rounding modes [20].

Subtraction, Multiplication, Division and Square Root

Similarly to the support of the directed rounding modes that IEEE754-2008 requires but
that we did not originally consider with Algorithm 3, IEEE754-2008 requires the implementa-
tion of heterogeneous operations also for subtraction, multiplication, division, square root
and fused-multiply-add. We shall exclude fused-multiply-add from the discussion at first, as
it is by itself an operation that was added to the IEEE754 Standard with the 2008 revision.

For subtraction, Algorithm 3 needs to be modified only slightly. This modification is
trivial. For multiplication, the modification is more substantial: the TwoSum sequence in the
end needs to be replaced by a TwoMul sequence [197]. Care needs to be taken with respect to
subnormal numbers occurring in that TwoMul sequence. Proper scaling allows for the correct
computation of the sign of 𝜀 notwithstanding an underflowed 𝑧. The modified FastTwoMul
sequence used for the correct setting of flags in the the underflow case needs to be replaced
by a test that establishes if 𝑧 ̸= 𝑥× 𝑦 by other means. The use of a TwoMul sequence is likely
to be the easiest solution for this purpose.

For division and square root, no direct errorfree transformations exist as they do for
addition and multiplication with the TwoAdd resp. TwoMul sequences. As Algorithm 3
never relies on the actual value of the correcting term but only the sign of the error 𝜀 (resp. of
𝑡−𝑏), it is possible to modify the algorithm for support of division and square root. The sign of
the error of 𝑧 = ◇53(𝑥/𝑦) resp. 𝑧 = ◇53 (

√
𝑥) can be expressed in terms of 𝑥−𝑧×𝑦 with respect

to the sign of 𝑥 resp. in terms of 𝑥 − 𝑧 × 𝑧 for square root – where 𝑥 is necessarily positive
or zero. These quantities 𝑥− 𝑧 × 𝑦 and 𝑥− 𝑧 × 𝑧 can be exactly computed as floating-point
numbers, utilizing the TwoMul sequence and Sterbenz’ lemma [197, 238].
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For fused-multiply-add, the modifications required to adapt Algorithm 3 are still more
heavy but nevertheless possible. An exact result 𝑥×𝑦+𝑢 can be computed using the TwoMul
and TwoSum sequences, yielding a result on three binary64 bit numbers [165]. Similarly, the
error of a homogeneous fused-multiply-add can be computed exactly on two floating-point
numbers [23]. As the three elements of this floating-point expansion holding 𝑥× 𝑦 + 𝑢 are
ordered by magnitude, deducing the sign of the error 𝜀 is possible. Extreme care to avoid
spurious underflow or underflow and undue flag settings is required, though. However,
on platforms where the fused-multiply-add operation is not implemented in hardware but
requires emulation in software anyway, the use of our algorithm is not sensible: one would
rather start from the software emulation of an heterogeneous operation and modify the last
emulated rounding step in order to round to a narrower format.

Conclusion

In this Section, we have shown how Ziv’s rounding test, a classical floating-point building
block for the implementation of elementary functions, can be “recycled” to address the issue
of implementation of the IEEE754-2008 heterogeneous operations, which take operands in a
floating-point format larger than the floating-point format they return their results in.

With Algorithm 3 we have given an algorithm for the heterogeneous addition that is
agnostic to the prevailing rounding mode while still working in all rounding modes. It is
carefully designed to raise all flags required by IEEE754-2008 for heterogeneous addition and
raise no other flags than the ones required. We have briefly outlined how Algorithm 3 can be
modified to support subtraction, multiplication, division, square-root and fused-multiply-add,
too.

We shall draw the reader’s attention to the fact that Algorithm 3 also allows to emulate
a homogeneous binary32 fused-multiply-add operation on systems that do not implement
this operation in hardware but support binary64. The three inputs are readily upconverted to
binary64 before multiplying the multiplication operands exactly with a binary64 homoge-
neous multiplication. The rest of the work corresponds to adding two binary64 floating-point
numbers, performing one correct rounding to binary32, which is what our algorithm does.

From a more theoretical standpoint, let us add that the fact that we could propose an
algorithm to perform the IEEE754-2008 heterogeneous operations with nothing but IEEE754-
1985 homogeneous operations [116] means that the addition of these operations in the 2008
revision did not extend what can be computed within the set of the IEEE754 Standard’s
operations.

3.2.3 Correct Rounding of Arbitrary Length Decimal-To-Binary Conversions

For quite some time, the world of floating-point arithmetic has been separated into
two parts: the user facing part, where data was displayed and parsed in decimal, and the
more hidden part of the actual computation that was carried out in binary floating-point
arithmetic. IEEE754-2008 did partially alleviate this schism: it added support for decimal
floating-point arithmetic to the Standard, allowing data to stay in decimal all the way through
the computation from input, through processing until the output [117].

A huge amount of software, written using binary IEEE754 floating-point arithmetic,
continues to exist and serve its purpose. While support for binary floating-point arithmetic
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starts to enter even the market of the smallest devices [3, 184], support for decimal arithmetic,
in particular in hardware, stays limited [36].

We hence continue to experience the need to convert decimal user input, i.e. character
sequences written with the decimal digits 0 through 9 and some special characters to mark the
fractional part of a number, like the point, or to mark the beginning of the decimal exponent,
to binary IEEE754 floating-point numbers. To this input conversion adds the respective output
conversion from binary floating-point to decimal character sequences. The latter conversion
can essentially follow the classical approaches for binary-to-decimal conversion, as shown
in [49] and as we shall reuse them in Section 3.3.

The input conversion from decimal character sequences to binary floating-point is chal-
lenging when we wish to make it correctly rounded: all classical techniques for correct
rounding are based on the observation that for a function 𝑓 with some discrete input 𝑥 ∈ F
that must be rounded to a discrete output 𝑦 ∈ F, there exists a certain worst-case accuracy
that is required to distinguish between cases when 𝑓(𝑥) is exactly representable and when
it needs rounding to the discrete output [173, 197]. For decimal character sequences this is
no longer the case: the decimal input 𝑥 can be of arbitrary length, i.e. it can be arbitrarily
close to the preimage 𝑓−1(𝑦) of a binary floating-point number 𝑦 ∈ F. We can hence not pre-
compute worst-case accuracies for these decimal character sequence to binary floating-point
conversions.

For example, take �̌� = 224 + 1 = 16777217. This midpoint number is exactly halfway be-
tween the two IEEE754 binary32 floating-point numbers 𝑦1 = 224 ∈ F24 and 𝑦2 = 224+2 ∈ F24.
Now imagine the character sequence 𝑥 = 16777217.0000000000000000000000000001.
The conversion software can decide the rounding to nearest only once it has read in –and
converted– the whole bunch of zeros followed by that trailing one. As a matter of course, the
amount of zeros is unbounded and the conversion routine needs to keep going as long as the
input goes.

State of the art

Libraries, such as glibc [179], that do offer correct rounding –at least the default rounding
mode round-to-nearest– typically perform the conversion as sketched above: they represent
the whole input as an arbitrary length integer 𝑝 ∈ N that represents the input digits with the
decimal point dropped, and another arbitrary length integer 𝑞 ∈ N that represents the power
of 10 that is appropriate for the position of the decimal point and the specified exponent.
These two integers 𝑝 and 𝑞 form a rational number 𝑝/𝑞. The libraries continue by determining
an appropriate binary output exponent 𝐸, typically by determining the respective bit-lengths
of 𝑝 and 𝑞. They then form another rational number 𝑝′/𝑞′ = 2−𝐸 𝑝/𝑞 that eventually shall
become the integer mantissa 𝑚 closest to the input number, before 2𝐸 ·𝑚 gets output as an
IEEE754-2008 binary floating-point number. Determining 𝑚 out of 𝑝′/𝑞′ can be performed
essentially using a long division algorithm [179].

For the example of the sequence 𝑥 = 16777217.0000000000000000000000000001,
existing conversion software hence forms the two integers

𝑝 = 167772170000000000000000000000000001

and
𝑞 = 10000000000000000000000000000.
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It then determines that 𝑀 = ⌈log2(𝑝)⌉ = 118 and 𝑁 = ⌈log2(𝑞)⌉ = 94. This means that
𝐸 = 𝑀 − 𝑁 − 𝑘 + 1 = 118 − 94 + 24 + 1 = 1 is an appropriate exponent for a bi-
nary32 floating-point number with precision 𝑘 = 24. The number 𝑝′/𝑞′ is hence formed
as 𝑝′ = 167772170000000000000000000000000001 and 𝑞′ = 20000000000000000000000000000.
Long division yields 𝑚 and 𝑟 such that 𝑚′ 𝑞′ + 𝑟 = 𝑝′, where 𝑚′ = 8388608 and 𝑟 =
10000000000000000000000000001. As 𝑟 is just above 1/2 𝑞′ = 10000000000000000000000000000,
round-up needs to be performed, correcting 𝑚′ to 𝑚 = 8388609. The closest binary32 number
hence is 2𝐸 ·𝑚 = 21 · 8388609.

As a matter of course, the algorithm presented above has the disadvantage of requiring
dynamic memory allocation for the long integers 𝑝 and 𝑞. The maximum memory use of a
process using decimal character sequence scan routine such as scanf from a library as glibc
hence cannot be predicted. The memory usage is typically𝒪(𝑡) where 𝑡 is the size of the input.
Further, the complexity of the long division is at least 𝒪(𝑡⋆); for real-life implementations one
might even find 𝒪(𝑡2) [255].

Arbitrary Length Inputs: No Need for Dynamic Memory Allocation

Our goal is hence to design an algorithm for the conversion of decimal character sequences
to binary floating-point numbers in some IEEE754-2008 format, such as binary32 or binary64,
that respect the following constraints:

— The algorithm is correctly rounded. This means that if only the last digit in some long
character sequence decides the rounding, the algorithm will read the whole input.

— Its time complexity is hence 𝒪(𝑡), where 𝑡 is the length of the input.

— The algorithm nevertheless uses static memory allocation only, meaning that its space
complexity is 𝒪(1).

— The algorithm does not use long division for the sake of simplicity.

— Correct rounding is achieved in any of the IEEE754-2008 binary rounding modes. The
algorithm is agnostic of the rounding mode; IEEE754-2008 operations are executed
in such a way that the returned floating-point value is the correct rounding in the
prevailing rounding mode.

The basic observation that will allow us to design a conversion algorithm to fit these
constraints, is the following one: even though decimal to binary conversion is not always
exact –0.2 being an easy example, as no integer power of 2 is divisible by 5– the inverse
conversion from binary floating-point to decimal floating-point can be made exact for an a
priori known decimal precision 𝑙 ∈ N, 𝑙 > 2 – under the condition that the exponent range of
the binary floating-point format be bounded, which is the case for the IEEE754-2008 formats
binary32 and binary64.

Typically, we have a number 2𝐸 ·𝑚 in input with 𝑚 ∈ N s.t. 2𝑘−1 6 𝑚 6 2𝑘− 1 and 𝐸 ∈ N
s.t. 𝐸min 6 𝐸 6 𝐸max. For IEEE754-2008 binary64 for example, 𝑘 = 53, 𝐸min = −1128 and
𝐸max = 971, as can easily be shown adapting the values given in Section 3.1 to a normalized
integer mantissa. For the corresponding decimal number 10𝐹 · 𝑛 in output similar bounds
can be stated: 𝑛 ∈ N with 10𝑙−1 6 𝑛 6 10𝑙− and 𝐹 ∈ N with 𝐹min 6 𝐹 6 𝐹max. The fact that
𝐹 is bounded comes from the fact that 𝐸 is bounded: the binary input’s dynamic is preserved
by a conversion, the decimal output can only vary in orders of magnitude as much as the
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binary input does. Formally we have:

2𝐸 ·𝑚 = 10𝐹 · 𝑛
10𝐹 =

2𝐸 ·𝑚
𝑛

𝐹 = log10
2𝐸 ·𝑚
𝑛

and therefore

− 𝑙 + log10

(︁
2𝐸min+𝑘−1

)︁
< 𝐹 < −𝑙 + 1 + log10

(︁
2𝐸max+𝑘

)︁
. (3.1)

Given the fact that 𝐹 is integer, this reduces to

𝐹min , −𝑙 +
⌈︁
log10

(︁
2𝐸min+𝑘−1

)︁⌉︁
6 𝐹 6 −𝑙 + 1 +

⌊︁
log10

(︁
2𝐸max+𝑘

)︁⌋︁
, 𝐹max. (3.2)

Now, if the decimal precision 𝑙 ∈ N is chosen such that

𝑙 >
⌊︁
log10

(︁
2𝐸max+𝑘

)︁⌋︁
+ 1− 𝐸min, (3.3)

we will have 𝐹 upper-bounded by 𝐹 6 𝐹max 6 𝐸min. Assuming that 𝐸min 6 0, which is the
case for all binary IEEE754-2008 formats [117], this implies that 𝑛, expressed as follows, is
indeed an integer for all choices of 𝐸, 𝑚 and 𝐹 :

𝑛 = 10−𝐹 · 2𝐸 ·𝑚
= 10−𝐹 · 2𝐸min · 2𝐸−𝐸min ·𝑚
= 10−𝐹+𝐸min · 5−𝐸min · 2𝐸−𝐸min ·𝑚. (3.4)

In the last Eq. (3.4), we have −𝐹 + 𝐸min > 0, hence 10−𝐹+𝐸min ∈ N, −𝐸min > 0, hence
5−𝐸min ∈ N, 𝐸 − 𝐸min > 0, hence 2𝐸−𝐸min ∈ N, and, of course 𝑚 ∈ N. Therefore 𝑛 ∈ N and
the binary to decimal conversion, provided that 𝑚 and 𝐸 are bounded as indicated and the
decimal precision 𝑙 is at least as high as given by Eq. (3.3), is always exact.

We may now wonder how an exact binary floating-point to decimal floating-point conver-
sion can help us with our decimal character sequence to binary floating-point conversion. We
build our answer, the algorithm, on the following observations:

— The rounding boundaries, i.e. the points where a rounding abruptly changes from one
floating-point value to the next one, for binary floating-point numbers of precision 𝑘,
are the floating-point numbers of precision 𝑘′ = 𝑘 + 1 [165, 166].

— The exact binary to decimal conversion sketched above hence works not only for the
floating-point numbers of IEEE754-2008 formats but also for their rounding boundaries.
The values 𝑘, 𝐸min and 𝐸max just need adapting; they do not change but slightly.

— The exact binary to decimal conversion hence allows us to exactly find the decimal
counterpart to a binary rounding boundary, which represents the decisive point where
the rounding we are about to perform for a decimal to binary conversion changes.
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A Layered Approach

This enables the following layered approach to decimal character sequence to binary
floating-point conversion:

1. We read in a certain number ̂︀𝑙 ∈ N of significant decimal digits as well as the decimal
exponent ̂︀𝐹 , adjusted to the position of the decimal point and such that we have a
integer ̂︀𝑛 ∈ N such that 10

̂︀𝑙−1 6 ̂︀𝑛 6 10
̂︀𝑙 − 1 representing, together with ̂︀𝐹 , as 10

̂︀𝐹 · ̂︀𝑛, an
approximation with a relative error of up to 1/2 · 10−

̂︀𝑙+1 the exact input. For this step,
we determine ̂︀𝑙 such that 1/2 · 10−

̂︀𝑙+1 is less than the machine error of the binary format
we intend to round to, plus some extra guard bits 𝑔 > 2:

1/2 · 10−
̂︀𝑙+1 6 2−𝑘−𝑔.

This first step has of course a 𝒪(1) memory consumption and can be performed in 𝒪(𝑡)
time 6.

2. We convert the decimal approximation 10
̂︀𝐹 · ̂︀𝑛 to a binary approximation 2

̂︀𝐸 · ̂︀𝑚, 2
̂︀𝑘−1 6

̂︀𝑚 6 2
̂︀𝑘 − 1 with some precision ̂︀𝑘 ∈ N chosen such that it represents the exact input

–through the stack of the two approximations– with a relative error bounded by 2−𝑘−𝑔+2,
where 𝑘 is still the precision of the format we intend to round to. This conversion
step can be performed in a classical manner, determining first a candidate exponent
̂︀𝐸 through an approximation of 𝐹 · log2(10), a table lookup of an approximation of
10−𝐹+𝐸 , a small, fixed-size multiplication to get a candidate ̂︀𝑚 and some adjustments
to get 2

̂︀𝑘−1 6 ̂︀𝑚 6 2
̂︀𝑘 − 1. The time and space complexities of this step are 𝒪(1).

3. We perform a rounding test [66,197,264]: if we find no binary rounding boundary in the
small interval

[︁
2
̂︀𝐸 · ̂︀𝑚 · 1

1+2−𝑘−𝑔+2 ; 2
̂︀𝐸 · ̂︀𝑚 · 1

1+2−𝑘−𝑔+2

]︁
around 2

̂︀𝐸 · ̂︀𝑚, we are sure that

we can round 2
̂︀𝐸 · ̂︀𝑚 to the same binary floating-point value 2𝐸 ·𝑚 as if we rounded

the exact input, given by the character sequence. In this case we return the correctly
rounded value and stop the algorithm. If we do find a rounding boundary, call it 2�̌� · �̌�,
with 2𝑘 6 �̌� 6 2𝑘+1 − 1, we proceed to the next step. As a matter of course, this
rounding test can be performed in 𝒪(1) time and space.

4. We exactly convert the rounding boundary 2�̌� · �̌�, which satisfies 2𝑘 6 �̌� 6 2𝑘+1 − 1

and �̌�min 6 �̌� 6 �̌�max to a decimal equivalent 10𝐹 · �̌� = 2�̌� · �̌�. According to the Section
above, with Eq. (3.3), we can predetermine a precision 𝑙 such that this conversion is exact.
Hence, even though 𝑙 is pretty large –a couple of hundreds of digits for IEEE754-2008
binary64 [145]– the memory consumption, needed to store �̌� and all the intermediate
values to determine it, is statically known. This means we obtain a 𝒪(1) time and space
complexity also for this step 7.

5. We re-read 8 the decimal character sequence up to the 𝑙-th significant digit, forming a
long integer ̃︀𝑛 such that 10𝑙−1 6 ̃︀𝑛 6 10𝑙 − 1 and a corresponding decimal exponent

6. The exponent field being in the end of the decimal character string we need to keep going until we find
that exponent field, which translates to a 𝒪(𝑡) complexity instead of 𝒪(1). Interestingly, even if we use a naive,
quadratic algorithm for the conversion of the ̂︀𝑙 characters to ̂︀𝑛, as ̂︀𝑙 is fixed, the time complexity stays 𝒪(𝑡).

7. It’s just that the constant hidden in the 𝒪-notation is quite high.
8. The algorithm admits a variant for which the input is read only once, as is required for certain applications,

e.g. when the input comes from a UNIX pipe file descriptor that can be read only once.
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̃︀𝐹 , adjusted for the position of the decimal point and the precision 𝑙. After the 𝑙-
th significant digit, we continue reading the digits but only to compute a sticky bit
𝜎 ∈ {0, 1}: if all the digits after the 𝑙-th significant digit are zeros, we set 𝜎 to 0, if
we encounter a non-zero digit, we set it to 1 9. In the end of this process we have an
“approximation” 10

̃︀𝐹 · ̃︀𝑛 of the input, together with an indication if this approximation
happens to be exact or if it is inexact. This step can be performed in 𝒪(𝑡) time 10, where
𝑡 is the size of the input, and 𝒪(1) space, as the space required for ̃︀𝑛 is bounded with
̃︀𝑛 6 10𝑙 − 1.

6. We compare the reconverted rounding boundary 10𝐹 · �̌� with the 𝑙-digit accurate
representation of the input 10

̃︀𝐹 · ̃︀𝑛. This comparison takes 𝒪(1) time and space, as the
size of �̌� and ̃︀𝑛 is statically known. In the case when 10𝐹 · �̌� is equal to 10

̃︀𝐹 · ̃︀𝑛, we
replace the comparison test by what is indicated by the sticky bit 𝜎. As a result of the
comparison we exactly know whether the input is less than, equal to or greater than the
rounding boundary 2�̌� ·�̌�. This allows us to exhibit a value 2�̌�

′ ·�̌�′, 2𝑘+2 6 �̌�′ 6 2𝑘+3−1,
that will round to the same IEEE754-2008 binary floating point number 2𝐸 ·𝑚 as if the
complete decimal input were converted with infinite precision and then rounded. The
latter statement holds in any rounding mode; it is hence possible to make the algorithm
rounding-mode agnostic.

The preceding algorithmic scheme can be transformed into an effective algorithm that
performs decimal character sequence to binary floating-point conversion and that respects
the design constraints we have given ourselves. Unfortunately, the precise –and quite gory–
details of the different approximation and conversion steps, together with a presentation of
the state machine that analyzes in decimal character sequence and of the checks for the corner
conditions like complete underflow, gradual underflow, overflow or NaN handling, would
go exhaust the space available in this document. The interested reader may consult [145] for
an attempt to present them.

Conclusion

In this Section, we have presented an algorithmic approach to convert arbitrary length
decimal character sequences to binary IEEE754-2008 floating-point numbers, performing
correct rounding in any of the IEEE754-2008 binary rounding modes. The novelty of our
algorithm is that has statically known memory consumption, hence requires no dynamic
memory allocation, which alleviates any problems due to memory exhaustion in critical
environments. The algorithm has a time complexity of 𝒪(𝑡), where 𝑡 is the size of the decimal
input.

The actual implementation of the algorithm is technically challenging and extremely
tedious as an large amount of details need checking. Even though we have engaged in
implementing the algorithm already, we still list a (formally) proven implementation in our
list of things to do as future work. We would like to work hand in hand with specialists
in formal proofs to come up with an implementation that is both water-tight correct and
competitive with existing implementations of decimal character sequence conversions, which
do result to dynamic memory allocation.

9. and we can stop reading
10. Once again, interestingly, even if we use a quadratic algorithm to accumulate the digits into ̃︀𝑛, as 𝑙 is fixed,

the time complexity stays 𝒪(𝑡).
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3.2.4 Support for IEEE754-2008: an attempt of a conclusion

In this Section we have seen that supporting the entirety of the binary part of IEEE754-
2008 is perfectly feasible but tedious work: for the two formats binary32 and binary64 alone,
IEEE754-2008 mandates the support for 354 operations. Most of these operations are due to
the combinatorial explosion that can be observed for the so-called heterogeneous operations,
taking inputs larger than their outputs, rounding only once.

We have presented a way to implement these heterogeneous operations with no more than
already existing IEEE754-1985 homogeneous operations. Our algorithm was based on Ziv’s
rounding test, a floating-point operation sequence initially developed for the implementation
of elementary functions. The novelty of our algorithm for heterogeneous operations is that it
is rounding-mode agnostic, i.e. it produces a correct rounding in any IEEE754-2008 binary
rounding mode, without actually inquiring that rounding mode. While we have proven
our heterogeneous operations algorithm on paper, we would like to work in the future with
specialists in formal proof in order to develop an implementation that is fully proven formally.

We have also presented an algorithm to convert an arbitrarily long decimal character
sequence to a correctly rounded binary floating-point number. The novelty of this algorithm
is that it has statically known memory consumption and that it hence does not need dynamic
memory allocation. Its execution time is 𝒪(𝑡) and its space requirements are 𝒪(1), where 𝑡 is
the size of the input. It is based on the observation that even if decimal to binary conversion is
not generally exact, binary to decimal conversion can be made exact given a bounded binary
exponent range and a sufficiently precise decimal format. The algorithm converts the decimal
input to a preliminary binary representation and checks if correct rounding is possible. If
not, it reconverts the binary rounding boundary back to decimal and performs a decimal
conversion.

So has the last word about support for IEEE754-2008 been spoken? We think no. We would
ideally engage in and follow up on the development of a support library for IEEE754-2008,
similar to our libieee754 library, but with the following enhancements:

— A support library for IEEE754-2008 needs to come in several flavors: a version for high
performance computing, leveraging existing hardware at a maximum level, giving
the use just that couple of operations they can directly address with a programming
language like C, a version that does not at all depend on floating-point hardware and
that works in every environment, even though its performance is not so great, a version
that is formally proven, with respect to some formalization of the IEEE754 Standard, and
that can serve a reference for the Standard, and perhaps a version that even supports
non-default exception handling. These flavors should be selectable at compile time.

— Users will not make huge use of support libraries for standards like IEEE754-2008 if
these libraries are hard to use or awkward to adapt to existing code. We would like to
come up with a compiler environment that would allow users to compile existing code,
enhanced with pragmas to express IEEE754 behavior that is hard to express in standard
C, in a way that the floating-point operations are all mapped to a support library, which
can then come in one of the flavors cited above.

What a challenge! We shall try to get funding and help from other people for the realization
of such a library in the next years, though.
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3.3 Enhancing IEEE754-2008: Mixed-Radix Comparisons

As we have seen in Sections 2.2 and 3.2, the 2008 revision of the IEEE754 Standard
has enhanced the scope and, hence, number of features of the floating-point Standard in
many ways: decimal arithmetic was added, the heterogeneous operations increased the
“closedness” of a radix’ floating-point formats and numbers representable with them. On the
other hand, some of the additions to IEEE754-2008 may seem a little inconsequential: why
do implementers of the Standard, who want (or are required) to support three floating-point
formats, such as binary32, binary64 and binary128, have to support all 34 = 81 possible
combinations of operand and result formats of Fused-Multiply-And-Add, while the Standard
specifies no way of even correctly comparing floating-point numbers in the binary radix with
floating-point numbers in the decimal radix [117]? In order to propose solutions to possibly
remove these inconsistencies in future revisions of the Standard, we worked at solving these
issues.

In this Section, we hence propose our work on such mixed-radix comparisons. This work
has been published in [28], which is itself an extended version of [27]. In the subsequent
Section 3.4, we will go even one step further and start looking at mixed-radix computational
operations.

3.3.1 Uniting the Disjoint: Linking the IEEE754 Radices with Comparisons

The IEEE 754-2008 Standard for Floating-Point Arithmetic [117] specifies binary (radix-2)
and decimal (radix-10) floating-point number formats for a variety of precisions. Presented
already in Section 3.1, the so-called “basic interchange formats” are described with more
detail in Table 3.1.

The Standard neither requires nor forbids comparisons between floating-point numbers
of different radices (it states that floating-point data represented in different formats shall
be comparable as long as the operands’ formats have the same radix). However, such
“mixed-radix” comparisons may offer several advantages. It is not infrequent to read decimal
data from a database and to have to compare it to some binary floating-point number. The
comparison may be inaccurate if the decimal number is preliminarily converted to binary, or,
respectively, if the binary number is first converted to decimal.

Consider for instance the following C code:

double x = ...;
_Decimal64 y = ...;
if (x <= y)

...

The standardization of decimal floating-point arithmetic in C [124] is still at draft stage, and
compilers supporting decimal floating-point arithmetic handle code sequences such as the
previous one at their discretion and often in an unsatisfactory way. As it occurs, Intel’s icc
12.1.3 translates this sequence into a conversion from binary to decimal followed by a decimal
comparison. The compiler emits no warning that the boolean result might not be the expected
one because of rounding.

This kind of strategy may lead to inconsistencies. Consider such a “naive” approach built
as follows: when comparing a binary floating-point number 𝑥2 of format ℱ2, and a decimal
floating-point number 𝑥10 of format ℱ10, we first convert 𝑥10 to the binary format ℱ2 (that is,
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binary32 binary64 binary128

precision (bits) 24 53 113

𝑒min −126 −1022 −16382

𝑒max +127 +1023 +16383

decimal64 decimal128

precision (digits) 16 34

𝑒min −383 −6143

𝑒max +384 +6144

Table 3.1 – The basic binary and decimal interchange formats specified by the IEEE 754-2008
Standard.

we replace it by the ℱ2 number nearest 𝑥10), and then we perform the comparison in binary.
Denote the comparison operators so defined as <○, 6○, >○, and >○. Consider the following
variables (all exactly represented in their respective formats):

— 𝑥 = 3602879701896397/255, declared as a binary64 number;

— 𝑦 = 13421773/227, declared as a binary32 number;

— 𝑧 = 1/10, declared as a decimal64 number.

Then it holds that 𝑥 <○ 𝑦, but also 𝑦 6○ 𝑧 and 𝑧 6○ 𝑥. Such an inconsistent result might for
instance suffice to prevent a sorting program from terminating.

Remark that, in principle, 𝑥2 and 𝑥10 could both be converted to some longer format in
such a way that the naive method yields a correct answer. However, that method requires a
correctly rounded radix conversion, which is an intrinsically more expensive operation than
the comparison itself.

An experienced programmer is likely to explicitly convert all variables to a larger format.
However, we believe that ultimately the task of making sure that the comparisons are consis-
tent and correctly performed should be left to the compiler, and that the only fully consistent
way of comparing two numeric variables 𝑥 and 𝑦 of a different type is to effectively compare
𝑥 and 𝑦, and not to compare an approximation to 𝑥 to an approximation to 𝑦.

In what follows below, we describe algorithms to perform such “exact” comparisons
between binary numbers in any of the basic binary interchange formats and decimal numbers
in any of the basic decimal interchange formats. Our algorithms were developed with a
software implementation in mind. They end up being pretty generic, but we make no claim
as to their applicability to hardware implementations.

It is natural to require that mixed-radix comparisons not signal any floating-point excep-
tion, except in situations that parallel exceptional conditions specified in the Standard [117,
Section 5.11] for regular comparisons. For this reason, we avoid floating-point operations that
might signal exceptions, and mostly use integer arithmetic to implement our comparisons.

Our method is based on two steps:

— Algorithm 4 tries to compare numbers just by examining their floating-point exponents;



3.3 Enhancing IEEE754-2008: Mixed-Radix Comparisons 57

— when Algorithm 4 is inconclusive, Algorithm 5 provides the answer.

Algorithm 5 admits many variants and depends on a number of parameters. Tables 3.5 and 3.6
suggest suitable parameters for most typical use cases.

Implementing the comparison for a given pair of formats just requires the implementation
of Algorithms 4 and 5. The analysis of the algorithms as a function of all parameters, as
presented in Sections 3.3.4 to 3.3.6, is somewhat technical.

3.3.2 Mixed Radix Comparisons: Setting and Algorithmic Outline

We consider a binary format of precision 𝑝2, minimum exponent 𝑒min
2 and maximum

exponent 𝑒max
2 , and a decimal format of precision 𝑝10, minimum exponent 𝑒min

10 and maximum
exponent 𝑒max

10 . We want to compare a binary floating-point number 𝑥2 and a decimal floating-
point number 𝑥10.

Without loss of generality we assume 𝑥2 > 0 and 𝑥10 > 0 (when 𝑥2 and 𝑥10 are negative,
the problem reduces to comparing −𝑥2 and −𝑥10, and, when they have different signs, the
comparison is straightforward). The floating-point representations of 𝑥2 and 𝑥10 are

𝑥2 = 𝑀2 · 2𝑒2−𝑝2+1,

𝑥10 = 𝑀10 · 10𝑒10−𝑝10+1,

where 𝑀2, 𝑀10, 𝑒2 and 𝑒10 are integers that satisfy:

𝑒min
2 − 𝑝2 + 1 6 𝑒2 6 𝑒

max
2 ,

𝑒min
10 6 𝑒10 6 𝑒

max
10 ,

2𝑝2−1 6𝑀2 6 2𝑝2 − 1,

1 6𝑀10 6 10𝑝10 − 1

(3.5)

with 𝑝2, 𝑝10 > 1. (The choice of lower bound for 𝑒2 makes the condition 2𝑝2−1 6 𝑀2 hold
even for subnormal binary numbers.)

We assume that the so-called binary encoding (BID) [117,197] of IEEE 754-2008 is used for
the decimal format 11, so that the integer 𝑀10 is easily accessible in binary. Denote by

𝑝′10 = ⌈𝑝10 log2 10⌉ ,

the number of bits that are necessary for representing the decimal significands in binary.
When 𝑥2 and 𝑥10 have significantly different orders of magnitude, examining their ex-

ponents will suffice to compare them. Hence, we first perform a simple exponent-based
test (Section 3.3.3). When this does not suffice, a second step compares the significands
multiplied by suitable powers of 2 and 5. We compute “worst cases” that determine how
accurate the second step needs to be (Section 3.3.4), and show how to implement it efficiently
(Section 3.3.5). Section 3.3.6 is an aside describing a simpler algorithm that can be used if
we only want to decide whether 𝑥2 and 𝑥10 are equal. Finally, Section 3.3.7 discusses our
implementation of the comparison algorithms and presents experimental results.

11. This encoding is typically used in software implementations of decimal floating-point arithmetic, even if
BID-based hardware designs have been proposed [244].
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b32/d64 b32/d128 b64/d64 b64/d128 b128/d64 b128/d128

𝑝2 24 24 53 53 113 113

𝑝10 16 34 16 34 16 34

𝑝′10 54 113 54 113 54 113

𝑤 29 88 0 59 −60 −1

ℎ
(1)
min −570 −6371 −1495 −7296 −16915 −22716

ℎ
(1)
max 526 6304 1422 7200 16782 22560

𝑠min 18 23 19 23 27 27

datatype int32 int64 int32 int64 int64 int64

Table 3.2 – The various parameters involved in Step 1 of the comparison algorithm.

3.3.3 First step: eliminating the “simple cases” by examining the exponents

Normalization

As we have
1 6𝑀10 6 10𝑝10 − 1,

there exists a unique 𝜈 ∈ {0, 1, 2, . . . , 𝑝′10 − 1} such that

2𝑝
′
10−1 6 2𝜈𝑀10 6 2𝑝

′
10 − 1.

Our initial problem of comparing 𝑥2 and 𝑥10 reduces to comparing 𝑀2 · 2𝑒2−𝑝2+1+𝜈 and
(2𝜈𝑀10) · 10𝑒10−𝑝10+1.

The fact that we “normalize” the decimal significand 𝑀10 by a binary shift between two
consecutive powers of two is of course questionable; 𝑀10 could also be normalized into the
range 10𝑝10−1 6 10𝑡 ·𝑀10 6 10𝑝10 − 1. However, hardware support for this operation [244] is
not widespread. A decimal normalization would thus require a loop, provoking pipeline stalls,
whereas the proposed binary normalization can exploit an existing hardware leading-zero
counter with straight-line code.

Comparing the Exponents

Define ⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

𝑚 = 𝑀2,

ℎ = 𝑒2 − 𝑒10 + 𝜈 + 𝑝10 − 𝑝′10 + 1,

𝑛 = 𝑀10 · 2𝜈 ,
𝑔 = 𝑒10 − 𝑝10 + 1,

𝑤 = 𝑝′10 − 𝑝2 − 1

(3.6)

so that {︃
2𝜈𝑥2 = 𝑚 · 2ℎ+𝑔+𝑤,
2𝜈𝑥10 = 𝑛 · 10𝑔.

Our comparison problem becomes:
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Compare 𝑚 · 2ℎ+𝑤 with 𝑛 · 5𝑔.

We have
𝑚min = 2𝑝2−1 6 𝑚 6 𝑚max = 2𝑝2 − 1,

𝑛min = 2𝑝
′
10−1 6 𝑛 6 𝑛max = 2𝑝

′
10 − 1.

(3.7)

It is clear that 𝑚min · 2ℎ+𝑤 > 𝑛max · 5𝑔 implies 𝑥2 > 𝑥10, while 𝑚max · 2ℎ+𝑤 < 𝑛min · 5𝑔 implies
𝑥2 < 𝑥10. This gives

(1− 2−𝑝
′
10) · 5𝑔 < 2ℎ−2 ⇒ 𝑥10 < 𝑥2,

(1− 2−𝑝2) · 2ℎ < 5𝑔 ⇒ 𝑥2 < 𝑥10.
(3.8)

In order to compare 𝑥2 and 𝑥10 based on these implications, define

𝜙(ℎ) = ⌊ℎ · log5 2⌋.

Proposition 3.3.1. We have

𝑔 < 𝜙(ℎ)⇒ 𝑥2 > 𝑥10,

𝑔 > 𝜙(ℎ)⇒ 𝑥2 < 𝑥10.

Proof. If 𝑔 < 𝜙(ℎ) then 𝑔 6 𝜙(ℎ)−1, hence 𝑔 6 ℎ log5 2−1. This implies that 5𝑔 6 (1/5) ·2ℎ <
2ℎ/(4 · (1 − 2−𝑝

′
10)), therefore, from (3.8), 𝑥10 < 𝑥2. If 𝑔 > 𝜙(ℎ) then 𝑔 > 𝜙(ℎ) + 1, hence

𝑔 > ℎ log5 2, so that 5𝑔 > 2ℎ > (1− 2−𝑝2) · 2ℎ. This implies, from (3.8), 𝑥2 < 𝑥10.

Now consider the range of ℎ: by (3.6), ℎ lies between

ℎ
(1)
min = (𝑒min

2 − 𝑝2 + 1)− 𝑒max
10 + 𝑝10 − 𝑝′10 + 1

and

ℎ
(1)
max = 𝑒max

2 − 𝑒min
10 + 𝑝10.

That range is given in Table 3.2 for the basic IEEE formats. Knowing the range, it is easy to
implement 𝜙 as follows.

Proposition 3.3.2. Denote by ⌊·⌉ the nearest integer function. For large enough 𝑠 ∈ N, the
function defined by

̂︀𝜙(ℎ) = ⌊𝐿 · ℎ · 2−𝑠⌋, with 𝐿 = ⌊2𝑠 log5 2⌉,

satisfies 𝜙(ℎ) = ̂︀𝜙(ℎ) for all ℎ in the range [ℎ
(1)
min, ℎ

(1)
max].

Proposition 3.3.2 is an immediate consequence of the irrationality of log5 2. For known,
moderate values of ℎ(1)min and ℎ(1)max, the optimal choice 𝑠min of 𝑠 is small and easy to find. For
instance, if the binary format is binary64 and the decimal format is decimal64, then 𝑠min = 19.

Table 3.2 gives the value of 𝑠min for the basic IEEE formats. The product 𝐿 · ℎ, for ℎ in
the indicated range and 𝑠 = 𝑠min, can be computed exactly in (signed or unsigned) integer
arithmetic, with the indicated data type. Computing ⌊𝜉 ·2−𝛽⌋ of course reduces to a right-shift
by 𝛽 bits.

Propositions 3.3.1 and 3.3.2 yield to the following algorithm.
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1 Compute ℎ = 𝑒2 − 𝑒10 + 𝜈 + 𝑝10 − 𝑝′10 + 1 and 𝑔 = 𝑒10 − 𝑝10 + 1;
2 With the appropriate value of 𝑠, compute 𝜙(ℎ) = ⌊𝐿 · ℎ · 2−𝑠⌋ using integers;
3 if 𝑔 < 𝜙(ℎ) then return “𝑥2 > 𝑥10” ;
4 else if 𝑔 > 𝜙(ℎ) then return “𝑥2 < 𝑥10” ;
5 else first step is inconclusive (perform the second step);

Algorithm 4: First, exponent-based step

Note that, when 𝑥10 admits multiple distinct representations in the precision-𝑝10 decimal
format (i.e., when its cohort is non-trivial [117]), the success of the first step may depend
on the specific representation passed as input. For instance, assume that the binary and
decimal formats are binary64 and decimal64, respectively. Both 𝐴 = {𝑀10 = 1015, 𝑒10 = 0}
and 𝐵 = {𝑀10 = 1, 𝑒10 = 15} are valid representations of the integer 1. Assume we are
trying to compare 𝑥10 = 1 to 𝑥2 = 2. Using representation 𝐴, we have 𝜈 = 4, ℎ = −32, and
𝜙(ℎ) = −14 > 𝑔 = −15, hence the test from Algorithm 4 shows that 𝑥10 < 𝑥2. In contrast, if
𝑥10 is given in the form 𝐵, we get 𝜈 = 53, 𝜙(ℎ) = 𝜙(2) = 0 = 𝑔, and the test is inconclusive.

How Often is the First Step Enough?

We may quantify the quality of this first filter as follows. We say that Algorithm 4
succeeds if it answers “𝑥2 > 𝑥10” or “𝑥2 < 𝑥10” without proceeding to the second step, and
fails otherwise. Let 𝑋2 and 𝑋10 denote the sets of representations of positive, finite numbers
in the binary, resp. decimal formats of interest. (In the case of 𝑋2, each number has a single
representation.) Assuming zeros, infinities, and NaNs have been handled before, the input of
Algorithm 4 may be thought of as a pair (𝜉2, 𝜉10) ∈ 𝑋2 ×𝑋10.

Proposition 3.3.3. The proportion of input pairs (𝜉2, 𝜉10) ∈ 𝑋2 ×𝑋10 for which Algorithm 4
fails is bounded by

min

{︂
1

𝑒max
10 − 𝑒min

10 + 1
,

4

𝑒max
2 − 𝑒min

2 + 1

}︂
,

assuming 𝑝2 > 3.

Proof. The first step fails if and only if 𝜙(ℎ) = 𝑔. Write ℎ = 𝑒2 + 𝑡, that is, 𝑡 = 𝑝10 − 𝑝′10 + 1−
𝑒10 + 𝜈. Then 𝜙(ℎ) = 𝑔 rewrites as

⌊(𝑒2 + 𝑡) log5 2⌋ = 𝑔,

which implies

−𝑡+ 𝑔 log2 5 6 𝑒2 < −𝑡+ (𝑔 + 1) log2 5

< −𝑡+ 𝑔 log2 5 + 2.4.

The value of 𝜈 is determined by 𝑀10, so that 𝑡 and 𝑔 = 𝑒10 − 𝑝10 + 1 depend on 𝜉10 only. Thus,
for any given 𝜉10 ∈ 𝑋10, there can be at most 3 values of 𝑒2 for which 𝜙(ℎ) = 𝑔.

A similar argument shows that for given 𝑒2 and 𝑀10, there exist at most one value of 𝑒10
such that 𝜙(ℎ) = 𝑔.
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Let 𝑋norm
2 and 𝑋sub

2 be the subsets of 𝑋2 consisting of normal and subnormal numbers
respectively. Let 𝑟𝑖 = 𝑒max

𝑖 − 𝑒min
𝑖 + 1. The number 𝑁norm of pairs (𝜉2, 𝜉10) ∈ 𝑋norm

2 × 𝑋10

such that 𝜙(ℎ) = 𝑔 satisfies

𝑁norm 6 #{𝑀10 : 𝜉10 ∈ 𝑋10} ·#{𝑀2 : 𝜉2 ∈ 𝑋norm
2 }

·#{(𝑒2, 𝑒10) : 𝜉2 ∈ 𝑋norm
2 ∧ 𝜙(ℎ) = 𝑔}

6 (10𝑝10 − 1) · 2𝑝2−1 ·min{𝑟2, 3𝑟10}.

For subnormal 𝑥2, we have the bound

𝑁sub := #{(𝜉2, 𝜉10) ∈ 𝑋sub
2 ×𝑋10 : 𝜙(ℎ) = 𝑔}

6 #{𝑀10} ·#𝑋sub
2

= (10𝑝10 − 1) · (2𝑝2−1 − 1).

The total number of elements of 𝑋2 × 𝑋10 for which the first step fails is bounded by
𝑁norm +𝑁sub. This is to be compared with

#𝑋2 = 𝑟2 · 2𝑝2−1 + (𝑝2 − 1) · (2𝑝2−1 − 1)

> (𝑟2 + 1) · 2𝑝2−1,

#𝑋10 = 𝑟10 · (10𝑝10 − 1).

We obtain
𝑁norm +𝑁sub

#(𝑋2 ×𝑋10)
6 min

{︂
1

𝑟10
,

4

𝑟2

}︂
.

These are rough estimates. One way to get tighter bounds for specific formats is simply to
count, for each value of 𝜈, the pairs (𝑒2, 𝑒10) such that 𝜙(ℎ) = 𝑔. For instance, in the case of
comparison between binary64 and decimal64 floating-point numbers, one can check that the
failure rate in the sense of Proposition 3.3.3 is less than 0.1%.

As a matter of course, pairs (𝜉2, 𝜉10) will almost never be equidistributed in practice.
Hence the previous estimate should not be interpreted as a probability of success of Step 1. It
seems more realistic to assume that a well-written numerical algorithm will mostly perform
comparisons between numbers which are suspected to be close to each other. For instance, in
an iterative algorithm where comparisons are used as part of a convergence test, it is to be
expected that most comparisons need to proceed to the second step. Conversely, there are
scenarios, e.g., checking for out-of-range data, where the first step should be enough.

3.3.4 Second step: a closer look at the significands

Problem Statement

In the following we assume that 𝑔 = 𝜙(ℎ), i.e.,

𝑒10 − 𝑝10 + 1 =
⌊︀
(𝑒2 − 𝑒10 + 𝜈 + 𝑝10 − 𝑝′10 + 1) log5(2)

⌋︀
.

(Otherwise, the first step already allowed us to compare 𝑥2 and 𝑥10.)
Define a function

𝑓(ℎ) =
5𝜙(ℎ)

2ℎ+𝑤
.
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We have ⎧
⎪⎨
⎪⎩

𝑓(ℎ) · 𝑛 > 𝑚⇒ 𝑥10 > 𝑥2,

𝑓(ℎ) · 𝑛 < 𝑚⇒ 𝑥10 < 𝑥2,

𝑓(ℎ) · 𝑛 = 𝑚⇒ 𝑥10 = 𝑥2.

(3.9)

The second test consists in performing this comparison, with 𝑓(ℎ) · 𝑛 replaced by an accurate
enough approximation.

In order to ensure that an approximate test is indeed equivalent to (3.9), we need a lower
bound 𝜂 on the minimum nonzero value of

𝑑ℎ(𝑚,𝑛) =

⃒⃒
⃒⃒
⃒
5𝜙(ℎ)

2ℎ+𝑤
− 𝑚

𝑛

⃒⃒
⃒⃒
⃒ (3.10)

that may appear at this stage. We want 𝜂 to be as tight as possible in order to avoid unduly
costly computations when approximating 𝑓(ℎ) · 𝑛. The search space is constrained by the
following observations.

Proposition 3.3.4. Let 𝑔 and ℎ be defined by Equation (3.6). The equality 𝑔 = 𝜙(ℎ) implies

𝑒min
2 − 𝑝2 − 𝑝′10 + 3

1 + log5 2
6 ℎ <

𝑒max
2 + 2

1 + log5 2
. (3.11)

Additionally, 𝑛 satisfies the following properties:

1. if 𝑛 > 10𝑝10 , then 𝑛 is even;

2. if 𝜈 ′ = ℎ+ 𝜙(ℎ)− 𝑒max
2 + 𝑝′10 − 2 is nonnegative (which holds for large enough ℎ), then

2𝜈
′

divides 𝑛.

Proof. From (3.6), we get
𝑒2 = ℎ+ 𝑔 + 𝑝′10 − 𝜈 − 2.

Since 𝑒min
2 − 𝑝2 + 1 6 𝑒2 6 𝑒max

2 and as we assumed 𝑔 = 𝜙(ℎ), it follows that

𝑒min
2 − 𝑝2 + 1 6 ℎ+ 𝜙(ℎ)− 𝜈 + 𝑝′10 − 2 6 𝑒max

2 .

Therefore we have

𝑒min
2 − 𝑝2 + 𝜈 − 𝑝′10 + 3 6 (1 + log5 2)ℎ < 𝑒max

2 + 𝜈 − 𝑝′10 + 3,

and the bounds (3.11) follow because 0 6 𝜈 6 𝑝′10 − 1.
The binary normalization of 𝑀10, yielding 𝑛, implies that 2𝜈 | 𝑛. If 𝑛 > 10𝑝10 , then, by

(3.5) and (3.6), it follows that 𝜈 > 1 and 𝑛 is even. As ℎ+ 𝜙(ℎ)− 𝜈 6 𝑒max
2 − 𝑝′10 + 2, we also

have 𝜈 > 𝜈 ′. Since 𝜙 is increasing, there exists ℎ0 such that 𝜈 ′ > 0 for ℎ > ℎ0.

Table 3.3 gives the range (3.11) for ℎ with respect to the comparisons between basic IEEE
formats.



3.3 Enhancing IEEE754-2008: Mixed-Radix Comparisons 63

b32/d64 b32/d128 b64/d64 b64/d128 b128/d64 b128/d128

ℎ
(2)
min, ℎ

(2)
max −140, 90 −181, 90 −787, 716 −828, 716 −11565, 11452 −11606, 11452

𝑔
(2)
min, 𝑔

(2)
max −61, 38 −78, 38 −339, 308 −357, 308 −4981, 4932 −4999, 4932

#𝑔 100 117 648 666 9914 9932

ℎ0 54 12 680 639 11416 11375

Table 3.3 – Range of ℎ for which we may have 𝑔 = 𝜙(ℎ), and size of the table used in the
“direct method” of Section 3.3.5.

Required Worst-Case Accuracy

Let us now deal with the problem of computing 𝜂, considering 𝑑ℎ(𝑚,𝑛) under the con-
straints given by Equation (3.7) and Proposition 3.3.4. A similar problem was considered by
Cornea et al. [50] in the context of correctly rounded binary to decimal conversions. Their
techniques yield worst and bad cases for the approximation problem we consider. We will
take advantage of them in Section 3.3.7 to test our algorithms on many cases when 𝑥2 and
𝑥10 are very close. Here, we favor a different approach that is less computationally intensive
and mathematically simpler, making the results easier to check either manually or with a
proof-assistant.

Problem 1. Find the smallest nonzero value of

𝑑ℎ(𝑚,𝑛) =

⃒⃒
⃒⃒
⃒
5𝜙(ℎ)

2ℎ+𝑤
− 𝑚

𝑛

⃒⃒
⃒⃒
⃒

subject to the constraints ⎧
⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

2𝑝2−1 6 𝑚 6 2𝑝2 − 1,

2𝑝
′
10−1 6 𝑛 6 2𝑝

′
10 − 1,

ℎ
(2)
min 6 ℎ 6 ℎ

(2)
max,

𝑛 is even if 𝑛 > 10𝑝10 ,

if ℎ > ℎ0, then 2𝜈
′ | 𝑛

where

ℎ
(2)
min =

⌈︂
𝑒min
2 − 𝑝2 − 𝑝′10 + 3

1 + log5 2

⌉︂
,

ℎ
(2)
max =

⌊︂
𝑒max
2 + 2

1 + log5 2

⌋︂
,

ℎ0 =

⌈︂
𝑒max
2 − 𝑝′10 + 3

1 + log5 2

⌉︂
,

𝜈 ′ = ℎ+ 𝜙(ℎ)− 𝑒max
2 + 𝑝′10 − 2.

We recall how such a problem can be solved using the classical theory of continued
fractions [108, 135, 208].
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Given 𝛼 ∈ Q, build two finite sequences (𝑎𝑖)06𝑖6𝑛 and (𝑟𝑖)06𝑖6𝑛 by setting 𝑟0 = 𝛼 and
{︃

𝑎𝑖 = ⌊𝑟𝑖⌋ ,
𝑟𝑖+1 = 1/(𝑟𝑖 − 𝑎𝑖) if 𝑎𝑖 ̸= 𝑟𝑖.

For all 0 6 𝑖 6 𝑛, the rational number

𝑝𝑖
𝑞𝑖

= 𝑎0 +
1

𝑎1 +
1

. . . +
1

𝑎𝑖

is called the 𝑖th convergent of the continued fraction expansion of 𝛼. Observe that the process
defining the 𝑎𝑖 essentially is the Euclidean algorithm. If we assume 𝑝−1 = 1, 𝑞−1 = 0, 𝑝0 = 𝑎0,
𝑞0 = 1, we have 𝑝𝑖+1 = 𝑎𝑖+1𝑝𝑖 + 𝑝𝑖−1, 𝑞𝑖+1 = 𝑎𝑖+1𝑞𝑖 + 𝑞𝑖−1, and 𝛼 = 𝑝𝑛/𝑞𝑛.

It is a classical result [135, Theorem 19] that any rational number 𝑚/𝑛 such that
⃒⃒
⃒𝛼− 𝑚

𝑛

⃒⃒
⃒ < 1

2𝑛2

is a convergent of the continued fraction expansion of 𝛼. For basic IEEE formats, it turns out
that this classical result is enough to solve Problem 1, as cases when it is not precise enough
can be handled in an ad-hoc way.

First consider the case max(0,−𝑤) 6 ℎ 6 𝑝2. We can then write

𝑑ℎ(𝑚,𝑛) =
|5𝜙(ℎ)𝑛− 2ℎ+𝑤𝑚|

2ℎ+𝑤𝑛

where the numerator and denominator are both integers. If 𝑑ℎ(𝑚,𝑛) ̸= 0, we have |5𝜙(ℎ)𝑛−
𝑚2ℎ+𝑤| > 1, hence 𝑑ℎ(𝑚,𝑛) > 1/(2ℎ+𝑤𝑛) > 2𝑝2−ℎ−2𝑝′10+1 > 2−2𝑝′10+1. For the range of ℎ
where 𝑑ℎ(𝑚,𝑛) might be zero, the non-zero minimum is thus no less than 2−2𝑝′10+1.

If now 𝑝2 + 1 6 ℎ 6 ℎ
(2)
max, then ℎ + 𝑤 > 𝑝′10, so 5𝜙(ℎ) and 2ℎ+𝑤 are integers, and 𝑚2ℎ+𝑤

is divisible by 2𝑝
′
10 . As 𝑛 6 2𝑝

′
10 − 1, we have 𝑑ℎ(𝑚,𝑛) ̸= 0. To start with, assume that

𝑑ℎ(𝑚,𝑛) 6 2−2𝑝′10−1. Then, the integers 𝑚 and 𝑛 6 2𝑝
′
10 − 1 satisfy

⃒⃒
⃒⃒
⃒
5𝜙(ℎ)

2ℎ+𝑤
− 𝑚

𝑛

⃒⃒
⃒⃒
⃒ 6 2−2𝑝′10−1 <

1

2𝑛2
,

and hence 𝑚/𝑛 is a convergent of the continued fraction expansion of 𝛼 = 5𝜙(ℎ)/2ℎ+𝑤.
We compute the convergents with denominators less than 2𝑝

′
10 and take the minimum

of the |𝛼 − 𝑝𝑖/𝑞𝑖| for which there exists 𝑘 ∈ N such that 𝑚 = 𝑘𝑝𝑖 and 𝑛 = 𝑘𝑞𝑖 satisfy the
constraints of Problem 1. Notice that this strategy only yields the actual minimum nonzero of
𝑑ℎ(𝑚,𝑛) if we eventually find, for some ℎ, a convergent with |𝛼−𝑝𝑖/𝑞𝑖| < 2−2𝑝′10−1. Otherwise,
taking 𝜂 = 2−2𝑝′10−1 yields a valid (yet not tight) lower bound.

The case ℎ(2)min 6 ℎ 6 min(0,−𝑤) is similar. A numerator of 𝑑ℎ(𝑚,𝑛) then is |2−ℎ−𝑤𝑛 −
5−𝜙(ℎ)𝑚| and a denominator is 5−𝜙(ℎ)𝑛. We notice that 5−𝜙(ℎ) > 2𝑝

′
10 if and only if ℎ 6 −𝑝′10.

If −𝑝′10 + 1 6 ℎ 6 min(0,−𝑤) and 𝑑ℎ(𝑚,𝑛) ̸= 0, we have |2−ℎ𝑛 − 5−𝜙(ℎ)𝑚| > 1, hence
𝑑ℎ(𝑚,𝑛) > 1/(5−𝜙(ℎ)𝑛) > 2−2𝑝′10 . For ℎ(2)min 6 ℎ 6 −𝑝′10, we use the same continued fraction
tools as above.
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ℎ 𝑚 𝑛 − log2 𝜂

b32/d64 50 10888194 13802425659501406 111.40
b32/d128 −159 11386091 8169119658476861812680212016502305 229.57
b64/d64 −275 4988915232824583 12364820988483254 113.68

b64/d128 −818 5148744585188163 9254355313724266263661769079234135 233.58
b128/d64 2546 7116022508838657793249305056613439 13857400902051554 126.77
b128/d128 10378 7977485665655127446147737154136553 9844227914381600512882010261817769 237.14

Table 3.4 – Worst cases for 𝑑ℎ(𝑚,𝑛) and corresponding lower bounds 𝜂.

There remains the case min(0,−𝑤) 6 ℎ 6 max(0,−𝑤). If 0 6 ℎ 6 −𝑤, a numerator
of 𝑑ℎ(𝑚,𝑛) is |5𝜙(ℎ)2−ℎ−𝑤𝑛 −𝑚| and a denominator is 𝑛. Hence, if 𝑑ℎ(𝑚,𝑛) ̸= 0, we have
𝑑ℎ(𝑚,𝑛) > 1/𝑛 > 2𝑝

′
10 . If −𝑤 6 ℎ 6 0, a numerator of 𝑑ℎ(𝑚,𝑛) is |𝑛 − 5−𝜙(ℎ)2ℎ+𝑤𝑚| and a

denominator is 5−𝜙(ℎ)2ℎ+𝑤𝑛 6 5 · 2−ℎ2ℎ+𝑤𝑛 < 5 · 22𝑝′10−𝑝2−1. It follows that if 𝑑ℎ(𝑚,𝑛) ̸= 0,
we have 𝑑ℎ(𝑚,𝑛) > 1/5 · 2−2𝑝′10+𝑝2+1.

Proposition 3.3.5. The minimum nonzero values of 𝑑ℎ(𝑚,𝑛) under the constraints from
Problem 1 for the basic IEEE formats are attained for the parameters given in Table 3.4.

Proof. This follows from applying the algorithm outlined above to the parameters associated
with each basic IEEE format. Scripts to verify the results are provided along with our example
implementation of the comparison algorithm (see Section 3.3.7).

3.3.5 Inequality testing

As already mentioned, the first step of the full comparison algorithm is straightforwardly
implementable in 32-bit or 64-bit integer arithmetic. The second step reduces to comparing
𝑚 and 𝑓(ℎ) ·𝑛, and we have seen in Section 3.3.4 that it is enough to know 𝑓(ℎ) with a relative
accuracy given by the last column of Table 3.4. We now discuss several ways to perform that
comparison. The main difficulty is to efficiently evaluate 𝑓(ℎ) · 𝑛 with just enough accuracy.

Direct Method

A direct implementation of Equation (3.9) just replaces 𝑓(ℎ) with a sufficiently accurate
approximation, read in a table indexed with ℎ. The actual accuracy requirements can be
stated as follows. Recall that 𝜂 denotes a (tight) lower bound on (3.10).

Proposition 3.3.6. Assume that 𝜇 approximates 𝑓(ℎ) · 𝑛 with relative accuracy 𝜒 < 𝜂/2−𝑤+2

or better, that is,
|𝑓(ℎ) · 𝑛− 𝜇| 6 𝜒𝑓(ℎ) · 𝑛 < 𝜂

2−𝑤+2
𝑓(ℎ) · 𝑛. (3.12)

The following implications hold:

⎧
⎪⎨
⎪⎩

𝜇 > 𝑚+ 𝜒 · 2𝑝2+1 =⇒ 𝑥10 > 𝑥2,

𝜇 < 𝑚− 𝜒 · 2𝑝2+1 =⇒ 𝑥10 < 𝑥2,

|𝑚− 𝜇| 6 𝜒 · 2𝑝2+1 =⇒ 𝑥10 = 𝑥2.

(3.13)
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Proof. First notice that 𝑓(ℎ) 6 2−𝑤 = 2𝑝2−𝑝
′
10+1 for all ℎ. Since 𝑛 < 2𝑝

′
10 , condition (3.12)

implies |𝜇− 𝑓(ℎ) · 𝑛| < 2𝑝2+1𝜒, and hence |𝑓(ℎ) · 𝑛−𝑚| > |𝜇−𝑚| − 2𝑝2+1𝜒.
Now consider each of the possible cases that appear in (3.13). If |𝜇−𝑚| > 2𝑝2+1𝜒, then

𝑓(ℎ) ·𝑛−𝑚 and 𝜇−𝑚 have the same sign. The first two implications from (3.9) then translate
into the corresponding cases from (3.13).

If finally |𝜇−𝑚| 6 2𝑝2+1𝜒, then the triangle inequality yields |𝑓(ℎ) · 𝑛−𝑚| 6 2𝑝2+2𝜒,
which implies |𝑓(ℎ)−𝑚/𝑛| < 2𝑝2+2𝜒/𝑛 < 2𝑝2+𝑤𝜂/𝑛 6 𝜂. By definition of 𝜂, this cannot
happen unless 𝑚/𝑛 = 𝑓(ℎ). This accounts for the last case.

For instance, in the case of binary64–decimal64 comparisons, it is more than enough to
compute the product 𝑓(ℎ) · 𝑛 in 128-bit arithmetic.

Proposition 3.3.4 gives the number of values of ℎ to consider in the table of 𝑓(ℎ), which
grows quite large (23.5 kB for b64/d64 comparisons, 721 kB in the b128/d128 case, assuming
a memory alignment on 8-byte boundaries). However, it could possibly be shared with
other algorithms such as binary-decimal conversions. Additionally, ℎ is available early in the
algorithm flow, so that the memory latency for the table access can be hidden behind the first
step.

The number of elements in the table can be reduced at the price of a few additional
operations. Several consecutive ℎ map to a same value 𝑔 = 𝜙(ℎ). The corresponding values of
𝑓(ℎ) = 2𝜙(ℎ)·log2 5−ℎ are binary shifts of each other. Hence, we may store the most significant
bits of 𝑓(ℎ) as a function of 𝑔, and shift the value read off the table by an appropriate amount
to recover 𝑓(ℎ). The table size goes down by a factor of about log2(5) ≈ 2.3.

More precisely, define 𝐹 (𝑔) = 5𝑔2−𝜓(𝑔), where

𝜓(𝑔) = ⌊𝑔 · log2 5⌋. (3.14)

We then have 𝑓(ℎ) = 𝐹 (𝜙(ℎ)) · 2−𝜌(ℎ) with 𝜌(ℎ) = ℎ− 𝜓(𝜙(ℎ)). The computation of 𝜓 and 𝜌
is similar to that of 𝜙 in Step 1. In addition, we may check that

1 6 𝐹 (𝜙(ℎ)) < 2 and 0 6 𝜌(ℎ) 6 3

for all ℎ. Since 𝜌(ℎ) is nonnegative, multiplication by 2𝜌(ℎ) can be implemented with a bitshift,
not requiring branches.

We did not implement this size reduction: instead, we concentrated on another size
reduction opportunity that we shall describe now.

Bipartite Table

That second table size reduction method uses a bipartite table. Additionally, it takes
advantage of the fact that, for small nonnegative 𝑔, the exact value of 5𝑔 takes less space than
an accurate enough approximation of 𝑓(ℎ) (for instance, 5𝑔 fits on 64 bits for 𝑔 6 27). In the
case of a typical implementation of comparison between binary64 and decimal64 numbers,
the bipartite table uses only 800 bytes of storage.

Most of the overhead in arithmetic operations for the bipartite table method can be hidden
on current processors through increased instruction-level parallelism. The reduction in table
size also helps decreasing the probability of cache misses.

Recall that we suppose 𝑔 = 𝜙(ℎ), so that ℎ lies between bounds ℎ(2)min, ℎ
(2)
max deduced from

Proposition 3.3.4. Corresponding bounds 𝑔(2)min, 𝑔
(2)
max on 𝑔 follow since 𝜙 is nondecreasing.
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For some integer “splitting factor” 𝛾 > 0 and 𝜀 = ±1, write

𝑔 = 𝜙(ℎ) = 𝜀(𝛾𝑞 − 𝑟), 𝑞 =

⌈︂
𝜀𝑔

𝛾

⌉︂
, (3.15)

so that

𝑓(ℎ) =

(︂
5𝛾𝑞

5𝑟

)︂𝜀
· 2−ℎ−𝑤.

Typically, 𝛾 will be chosen as a power of 2, but other values can occasionally be useful. With
these definitions, we have 0 6 𝑟 6 𝛾 − 1, and 𝑞 lies between

⌈︃
𝜀
𝑔
(2)
min

𝛾

⌉︃
and

⌈︃
𝜀
𝑔
(2)
max

𝛾

⌉︃

(the order of the bounds depends on 𝜀). The integer 5𝑟 fits on 𝜓(𝑟) + 1 bits, where 𝜓 is the
function defined by (3.14).

Instead of tabulating 𝑓(ℎ) directly, we will use two tables: one containing the most
significant bits of 5𝛾𝑞 roughly to the precision dictated by the worst cases computed in
Section 3.3.4, and the other containing the exact value 5𝑟 for 0 6 𝑟 6 𝛾 − 1. We denote by 𝜆1
and 𝜆2 the respective precisions (entry sizes in bits) of these tables. Based on these ranges
and precisions, we assume

𝜆1 > log2(𝜂
−1)− 𝑤 + 3, (3.16)

𝜆2 > 𝜓(𝛾 − 1) + 1. (3.17)

In addition, it is natural to suppose 𝜆1 larger than or close to 𝜆2: otherwise, an algorithm
using two approximate tables will likely be more efficient.

In practice, 𝜆2 will typically be one of the available machine word widths, while, for
reasons that should become clear later, 𝜆1 will be chosen slightly smaller than a word size. For
each pair of basic IEEE formats, Tables 3.5 and 3.6 provide values of 𝜀, 𝛾, 𝜆1, 𝜆2 (and other pa-
rameters whose definition follows later) suitable for typical processors. The suggested values
were chosen by optimizing either the table size or the number of elementary multiplications
in the algorithm, with or without the constraint that 𝛾 be a power of two.

It will prove convenient to store the table entries left-aligned, in a fashion similar to
floating-point significands. Thus, we set

𝜃1(𝑞) = 5𝛾𝑞·2𝜆1−1−𝜓(𝛾𝑞),

𝜃2(𝑟) = 5𝑟 ·2𝜆2−1−𝜓(𝑟),

where the power-of-two factors provide for the desired alignment. One can check that

2𝜆1−1 6 𝜃1(𝑞) < 2𝜆1 , 2𝜆2−1 6 𝜃2(𝑟) < 2𝜆2 (3.18)

for all ℎ.
The value 𝑓(ℎ) now decomposes as

𝑓(ℎ) =
5𝑔

2ℎ+𝑤
=

(︂
𝜃1(𝑞)

𝜃2(𝑟)

)︂𝜀
2𝜀·(𝜆2−𝜆1)−𝜎(ℎ)−𝑤 (3.19)
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where
𝜎(ℎ) = ℎ− 𝜀 ·

(︀
𝜓(𝛾𝑞)− 𝜓(𝑟)

)︀
. (3.20)

Equations (3.14) and (3.20) imply that

ℎ− 𝑔 log2 5− 1 < 𝜎(ℎ) < ℎ− 𝑔 log2 5 + 1.

As we also have ℎ log5 2− 1 6 𝑔 = 𝜙(ℎ) < ℎ log5 2 by definition of 𝜙, it follows that

0 6 𝜎(ℎ) 6 3. (3.21)

Now let 𝜏 > −1 be an integer serving as an adjustment parameter to be chosen later. In
practice, we will usually 12 choose 𝜏 = 0 and sometimes 𝜏 = −1 (see Tables 3.5 and 3.6). For
most purposes the reader may simply assume 𝜏 = 0. Define

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∆ = 𝜃1(𝑞) · 𝑛 · 2𝜏−𝑝
′
10

− 𝜃2(𝑟) ·𝑚 · 2𝜏+𝜆1−𝜆2+𝜎(ℎ)−𝑝2−1, 𝜀 = +1,

∆ = 𝜃1(𝑞) ·𝑚 · 2𝜏−𝑝2−1

− 𝜃2(𝑟) · 𝑛 · 2𝜏+𝜆1−𝜆2−𝜎(ℎ)−𝑝
′
10 , 𝜀 = −1.

The relations |𝑥2| > |𝑥10|, |𝑥2| = |𝑥10|, and |𝑥2| < |𝑥10| hold respectively when 𝜀∆ < 0, ∆ = 0,
and 𝜀∆ > 0.

Proposition 3.3.7. Unless 𝑥2 = 𝑥10, we have |∆| > 2𝜏+1.

Proof. Assume 𝑥2 ̸= 𝑥10. For 𝜀 = +1, and using (3.19), the definition of ∆ rewrites as

∆ = 𝜃2(𝑟)𝑛 2𝜏+𝜆1−𝜆2+𝜎(ℎ)−𝑝2−1
(︁
𝑓(ℎ)− 𝑚

𝑛

)︁
.

Since 𝑓(ℎ) = 𝑚/𝑛 is equivalent to 𝑥2 = 𝑥10, we know by Proposition 3.3.5 that |𝑓(ℎ)−𝑚/𝑛| >
𝜂. Together with the bounds (3.7), (3.16), (3.18), and (3.21), this implies

log2 |∆| > (𝜆2 − 1) + (𝑝′10 − 1) + 𝜏 + 𝜆1 − 𝜆2 − 𝑝2 − 1

+ log2 𝜂

= (𝜆1 + log2 𝜂 + 𝑤 − 3) + 𝜏 + 1 > 𝜏 + 1.

Similarly, for 𝜀 = −1, we have

∆ = −𝜃1(𝑞)𝑛 2𝜏−𝑝2−1
(︁
𝑓(ℎ)− 𝑚

𝑛

)︁
,

so that

log2 |∆| > (𝜆1 − 1) + (𝑝′10 − 1) + 𝜏 − 𝑝2 − 1 + log2 𝜂

> 𝜏 + 1

when ∆ ̸= 0.

12. See the comments following Equations (3.23) to (3.25). Yet allowing for positive values of 𝜏 enlarges
the possible choices of parameters to satisfy (3.25) (resp. (3.25’)) for highly unusual floating-point formats and
implementation environments. For instance, it makes it possible to store the table for 𝜃1 in a more compact
fashion, using a different word size for the table than for the computation.
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As already explained, the values of 𝜃2(𝑟) are integers and can be tabulated exactly. In
contrast, only an approximation of 𝜃1(𝑞) can be stored. We represent these values as ⌈𝜃1(𝑞)⌉,
hence replacing ∆ by the easy-to-compute

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

̃︀∆ =
⌊︀
⌈𝜃1(𝑞)⌉ · 𝑛 · 2𝜏−𝑝

′
10
⌋︀

−
⌊︀
𝜃2(𝑟) ·𝑚 · 2𝜏+𝜆1−𝜆2+𝜎(ℎ)−𝑝2−1

⌋︀
, 𝜀 = +1,

̃︀∆ =
⌊︀
⌈𝜃1(𝑞)⌉ ·𝑚 · 2𝜏−𝑝2−1

⌋︀

−
⌊︀
𝜃2(𝑟) · 𝑛 · 2𝜏+𝜆1−𝜆2−𝜎(ℎ)−𝑝

′
10
⌋︀
, 𝜀 = −1.

Proposition 3.3.7 is in principle enough to compare 𝑥2 with 𝑥10, using a criterion similar
to that from Proposition 3.3.6. Yet, additional properties hold that allow for a more efficient
final decision step.

Proposition 3.3.8. Assume 𝑔 = 𝜙(ℎ), and let ̃︀∆ be the signed integer defined above. For
𝜏 > 0, the following equivalences hold:

∆ < 0 ⇐⇒ ̃︀∆ 6 −2𝜏 ,

∆ = 0 ⇐⇒ 0 6 ̃︀∆ 6 2𝜏 ,

∆ > 0 ⇐⇒ ̃︀∆ > 2𝜏+1.

Furthermore, if 𝜏 ∈ {−1, 0} and

𝜆1 − 𝜆2 + 𝜏 >

{︃
𝑝2 + 1, 𝜀 = +1,

𝑝′10 + 3, 𝜀 = −1,
(3.22)

then ∆ and ̃︀∆ have the same sign (in particular, ̃︀∆ = 0 if and only if ∆ = 0).

Proof. Write the definition of ̃︀∆ as

̃︀∆ =
⌊︀
⌈𝜃1(𝑞)⌉𝑋

⌋︀
−
⌊︀
𝜃2(𝑟)𝑋

′⌋︀

where the expressions of 𝑋 and 𝑋 ′ depend on 𝜀, and define error terms 𝛿tbl, 𝛿rnd, 𝛿′rnd by

𝛿tbl = ⌈𝜃1(𝑞)⌉ − 𝜃1(𝑞), 𝛿rnd = ⌊⌈𝜃1(𝑞)⌉𝑋⌋ − ⌈𝜃1(𝑞)⌉𝑋,
𝛿′rnd = ⌊𝜃2(𝑟)𝑋 ′⌋ − 𝜃2(𝑟)𝑋 ′.

The 𝛿’s then satisfy
0 6 𝛿tbl < 1, −1 < 𝛿rnd, 𝛿

′
rnd 6 0.

For both possible values of 𝜀, we have 13 0 6 𝑋 6 2𝜏 and hence

−1 < ̃︀∆−∆ = 𝑋𝛿tbl + 𝛿rnd − 𝛿′rnd < 2𝜏 + 1.

If ∆ < 0, Proposition 3.3.7 implies that

̃︀∆ < −2𝜏+1 + 2𝜏 + 1 = −2𝜏 + 1.

13. Actually 0 6 𝑋 6 2𝜏−1 for 𝜀 = −1: this dissymmetry is related to our choice of always expressing the
lower bound on Δ in terms of 𝜂 rather than using a lower bound on 𝑓(ℎ)−1 − 𝑛/𝑚 when 𝜀 = −1.
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It follows that ̃︀∆ 6 −⌊2𝜏⌋ since ̃︀∆ is an integer. By the same reasoning, ∆ > 0 implies
̃︀∆ > ⌊2𝜏+1⌋, and ∆ = 0 implies 0 6 ̃︀∆ 6 ⌈2𝜏⌉. This proves the first claim.

Now assume that (3.22) holds. In this case, we have 𝛿′rnd = 0, so that −1 < ̃︀∆−∆ < 2𝜏 .
The upper bounds on ̃︀∆ become ̃︀∆ 6 −⌊2𝜏⌋ − 1 for ∆ < 0 and ̃︀∆ 6 ⌈2𝜏⌉ − 1 for ∆ = 0. When
−1 6 𝜏 6 0, these estimates respectively imply ̃︀∆ < 0 and ̃︀∆ = 0, while ̃︀∆ > ⌊2𝜏+1⌋ implies
∆ > 0. The second claim follows.

The conclusion ̃︀∆ = 0 = ∆ when 𝑥2 = 𝑥10 for certain parameter choices means that there
is no error in the approximate computation of ∆ in these cases. Specifically, the tabulation
error 𝛿tbl and the rounding error 𝛿rnd cancel out, thanks to our choice to tabulate the ceiling
of 𝜃1(𝑞) (and not, say, the floor).

We now describe in some detail the algorithm resulting from Proposition 3.3.8, in the
case 𝜀 = +1. In particular, we will determine integer datatypes on which all steps can be
performed without overflow, and arrange the powers of two in the expression of ̃︀∆ in such a
way that computing the floor functions comes down to dropping the least significant words
of multiple-word integers.

Let 𝑊 : N → N denote a function satisfying 𝑊 (𝑘) > 𝑘 for all 𝑘. In practice, 𝑊 (𝑘) will
typically be the width of the smallest “machine word” that holds at least 𝑘 bits. We further
require that (for 𝜀 = +1):

𝑊 (𝑝′10)− 𝑝′10 > 1, (3.23)
𝑊 (𝜆1)− 𝜆1 >𝑊 (𝜆2)− 𝜆2 + 𝜏 + 3, (3.24)

𝑊 (𝑝2)− 𝑝2 +𝑊 (𝜆2)− 𝜆2 >𝑊 (𝜆1)− 𝜆1 − 𝜏 + 1. (3.25)

These assumptions are all very mild in view of the IEEE-754-2008 Standard. Indeed, for all
IEEE interchange formats (including binary16 and formats wider than 64 bits), the space
taken up by the exponent and sign leaves us with at least 5 bits of headroom if we choose for
𝑊 (𝑝2), resp. 𝑊 (𝑝′10) the word width of the format. Even if we force 𝑊 (𝜆2) = 𝜆2 and 𝜏 = 0,
this always allows for a choice of 𝜆1, 𝜆2 and 𝑊 (𝜆2) satisfying (3.16), (3.17) and (3.23)–(3.25).

Proposition 3.3.9. When either 𝜏 > 0 or 𝜏 = −1 and (3.22) holds, Algorithm 5 correctly
decides the ordering between 𝑥2 and 𝑥10.

Proof. Hypotheses (3.23) and (3.25), combined with the inequalities 𝜎(ℎ) > 0 and 𝜏 > −1,
imply that the shifts in Steps 4 and 5 are left shifts. They can be performed without overflow
on unsigned words of respective widths 𝑊 (𝜆1), 𝑊 (𝑝′10) and 𝑊 (𝑝2) since 𝑊 (𝜆1)− 𝜆1 > 𝜏 + 1
and𝑊 (𝑝2)−𝑝2 > 𝜔+3, both by (3.24). The same inequality implies that the (positive) integers
𝐴 and 𝐵 both fit on 𝑊 (𝜆1)− 1 bits, so that their difference can be computed by a subtraction
on 𝑊 (𝜆1) bits. The quantity 𝐴−𝐵 computed in Step 6 agrees with the previous definition
of ̃︀∆, and ∆′ has the same sign as ̃︀∆, hence Proposition 3.3.8 implies that the relation returned
in Step 8 is correct.
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Denote 𝑥+ = max(𝑥, 0) and 𝑥− = max(−𝑥, 0), so that 𝑥 = 𝑥+ − 𝑥−.

1 Compute 𝑞 and 𝑟 as defined in (3.15), with 𝜀 = +1;
2 Compute 𝜎(ℎ) using (3.20) and Proposition 3.3.2;
3 Read ⌈𝜃1(𝑞)⌉ from the table, storing it on a 𝑊 (𝜆1)-bit (multiple-)word;
4 Compute

𝐴 =
⌊︀
(⌈𝜃1(𝑞)⌉ · 2𝜏

+
) · (𝑛2𝑊 (𝑝′10)−𝑝′10−𝜏−) · 2−𝑊 (𝑝′10)

⌋︀

by (constant) left shifts followed by a 𝑊 (𝜆1)-by-𝑊 (𝑝′10)-bit multiplication, dropping
the least significant word(s) of the result that correspond to 𝑊 (𝑝′10) bits;

5 Compute
𝐵 =

⌊︀
𝜃2(𝑟) · (𝑚2𝜎(ℎ)+𝜔) · 2𝑊 (𝜆1)−𝑊 (𝜆2)−𝑊 (𝑝2)

⌋︀

where the constant 𝜔 is given by

𝜔 = 𝑊 (𝑝2)− 𝑝2 +𝑊 (𝜆2)− 𝜆2 −𝑊 (𝜆1) + 𝜆1 + 𝜏 − 1

in a similar way, using a 𝑊 (𝜆2)-by-𝑊 (𝑝2)-bit multiplication;
6 Compute the difference ̃︀∆ = 𝐴−𝐵 as a 𝑊 (𝜆1)-bit signed integer;
7 Compute ∆′ = ⌊̃︀∆2−𝜏−1⌋2𝜏+1 by masking the 𝜏 + 1 least significant bits of ̃︀∆;
8 return ⎧

⎪⎨
⎪⎩

“𝑥10 < 𝑥2” if ∆′ < 0,

“𝑥10 = 𝑥2” if ∆′ = 0,

“𝑥10 > 𝑥2” if ∆′ > 0.

Algorithm 5: Step 2, second method, 𝜀 = +1

When 𝜏 ∈ {−1, 0} and (3.22) holds, no low-order bits are dropped in Step 5, and Step 7
can be omitted (that is, replaced by ∆′ := ̃︀∆). Observe additionally that a version of Step 8 re-
turning −1, 0 or 1 according to the comparison result can be implemented without branching,
using bitwise operations on the individual words which make up the representation of ∆′ in
two’s complement encoding.

The algorithm for 𝜀 = −1 is completely similar, except that (3.23)–(3.25) become

𝑊 (𝑝2)− 𝑝2 > 2, (3.23’)
𝑊 (𝜆1)− 𝜆1 >𝑊 (𝜆2)− 𝜆2 + 𝜏 + 1, (3.24’)

𝑊 (𝑝′10)− 𝑝′10 +𝑊 (𝜆2)− 𝜆2 >𝑊 (𝜆1)− 𝜆1 − 𝜏 + 3, (3.25’)

and 𝐴 and 𝐵 are computed as

𝐴 =
⌊︀
(⌈𝜃1(𝑞)⌉ · 2𝜏

+
) · (𝑚2𝑊 (𝑝2)−𝑝2−𝜏−−1) · 2−𝑊 (𝑝2)

⌋︀

𝐵 =
⌊︀
𝜃2(𝑟) · (𝑛2𝜔−𝜎(ℎ)) · 2𝑊 (𝜆1)−𝑊 (𝜆2)−𝑊 (𝑝′10)

⌋︀
,

with
𝜔 = 𝑊 (𝑝′10)− 𝑝′10 +𝑊 (𝜆2)− 𝜆2 −𝑊 (𝜆1) + 𝜆1 + 𝜏,

respectively using a 𝑊 (𝜆1)-by-𝑊 (𝑝2)-bit and a 𝑊 (𝜆2)-by-𝑊 (𝑝′10) multiplication.
Tables 3.5 and 3.6 suggest parameter choices for comparisons in basic IEEE formats. (We

only claim that these are reasonable choices that satisfy all conditions, not that they are
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optimal for any well-defined metric.) Observe that, though it has the same overall structure,
the algorithm presented in [27] is not strictly speaking a special case of Algorithm 5, as the
definition of the bipartite table (cf. (3.15)) is slightly different.

3.3.6 An Equality Test

Besides deciding the two possible inequalities, the direct and bipartite methods described
in the previous sections are able to determine cases when 𝑥2 is equal to 𝑥10. However, when
it comes to solely determine such equality cases additional properties lead to a simpler and
faster algorithm.

The condition 𝑥2 = 𝑥10 is equivalent to

𝑚 · 2ℎ+𝑤 = 𝑛 · 5𝑔, (3.26)

and thus implies certain divisibility relations between 𝑚, 𝑛, 5±𝑔 and 2±ℎ±𝑤. We now describe
an algorithm that takes advantage of these relations to decide (3.26) using only binary shifts
and multiplications on no more than max(𝑝′10 + 2, 𝑝2 + 1) bits.

Proposition 3.3.10. Assume 𝑥2 = 𝑥10. Then, we have

𝑔eqmin 6 𝑔 6 𝑔
eq
max, −𝑝′10 + 1 6 ℎ 6 𝑝2.

where

𝑔eqmin = −⌊𝑝10(1 + log5 2)⌋, 𝑔eqmax = ⌊𝑝2 log5 2⌋.

Additionally,

— if 𝑔 > 0, then 5𝑔 divides 𝑚, otherwise 5−𝑔 divides 𝑀10 (and 𝑛);

— if ℎ > −𝑤, then 2ℎ+𝑤 divides 𝑛, otherwise 2−(ℎ+𝑤) divides 𝑚.

Proof. First, observe that 𝑔 must be equal to 𝜙(ℎ) by Proposition 3.3.1, so 𝑔 > 0 if and only if
ℎ > 0. The divisibility properties follow immediately from the coprimality of 2 and 5.

When 𝑔 > 0, they imply 5𝑔 6 𝑚 < 2𝑝2 − 1, whence 𝑔 < 𝑝2 log5 2. Additionally, 2−ℎ−𝑤𝑛 is
an integer. Since ℎ > 0, it follows that 2ℎ 6 2−𝑤𝑛 < 2𝑝

′
10−𝑤 and hence

ℎ 6 𝑝′10 − 𝑤 − 1 = 𝑝2.

If now 𝑔 < 0, then 5−𝑔 divides 𝑚 = 2𝜈𝑀10 and hence divides 𝑀10, while 2−ℎ divides
2𝑤𝑚. Since 𝑀10 < 10𝑝10 and 2𝑤𝑚 < 2𝑝2+𝑤, we have −𝑔 < 𝑝10 log5 10 and −ℎ < 𝑝10 log2 10 <
𝑝′10.

These properties translate into Algorithm 6 below. Recall that 𝑥+ = max(𝑥, 0) and 𝑥− =
𝑥+− 𝑥. (Branchless algorithms exist to compute 𝑥+ and 𝑥− [10].) Let 𝑝 = max(𝑝′10 + 2, 𝑝2 + 1).

As a matter of course, the algorithm can return false as soon as any of the conditions from
Step 8 is known unsatisfied.

Proposition 3.3.11. Algorithm 6 correctly decides whether 𝑥2 = 𝑥10.
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1 if ¬(𝑔eqmin 6 𝑔 6 𝑔
eq
max) then return “𝑥2 ̸= 𝑥10” ;

2 Set 𝑢 = (𝑤 + ℎ)− and 𝑣 = (𝑤 + ℎ)+;
3 Using right shifts, compute

𝑚1 = ⌊2−𝑢𝑚⌋, 𝑛1 = ⌊2−𝑣𝑛⌋;

4 Using left shifts, compute 𝑚2 = 2𝑢𝑚1 and 𝑛2 = 2𝑣𝑛1;
5 Read 5𝑔

+
and 5𝑔

−
from a table (or compute them);

6 Compute 𝑚3 = 5𝑔
−
𝑚1 with a 𝑝′10 × 𝑝2 → 𝑝 bit multiplication ;

7 Compute 𝑛3 = 5𝑔
+
𝑛1 with a 𝑝2 × 𝑝′10 → 𝑝 bit multiplication;

8 if (𝑚2 = 𝑚) ∧ (𝑛2 = 𝑛) ∧ (𝑔 = 𝜙(ℎ)) ∧ (𝑛3 = 𝑚3) then return “𝑥2 == 𝑥10” ;
9 return “𝑥2 ̸= 𝑥10” ;

Algorithm 6: Equality test.

Proof. First observe that, if any of the conditions 𝑔 = 𝜙(ℎ), 𝑔eqmin 6 𝑔 6 𝑔
eq
max, 𝑚2 = 𝑚 and

𝑛2 = 𝑛 is violated, then 𝑥2 ̸= 𝑥10 by Propositions 3.3.1 and 3.3.10. Indeed, 𝑥2 = 𝑥10 implies
𝑚2 = 𝑚 and 𝑛2 = 𝑛 due to the divisibility conditions of Proposition 3.3.10. In all these cases,
the algorithm correctly returns false. In particular, no table access occurs unless 𝑔 lies between
𝑔eqmin and 𝑔eqmax.

Now assume that these four conditions hold. In particular, we have 𝑚1 = 2−𝑢𝑚 as
𝑚2 = 𝑚, and similarly 𝑛1 = 2−𝑣𝑛. The bounds on 𝑔 imply that 5𝑔

+
fits on 𝑝2 bits and 5𝑔

−
fits

on 𝑝′10 bits. If 𝑔 and 𝑤 + ℎ are both nonnegative, then 𝑚3 = 𝑚, and we have

5𝑔
+
𝑛1 = 5𝜙(ℎ)2−(𝑤+ℎ)𝑛 < 2−𝑤+𝑝

′
10 = 2𝑝2+1 6 2𝑝.

By the same reasoning, if 𝑔, 𝑤 + ℎ 6 0, then 𝑛3 = 𝑛 and

5−𝑔2𝑤+ℎ𝑚 < 5 · 2𝑝′10−1 < 2𝑝.

If now 𝑔 > 0 with ℎ 6 −𝑤, then 𝑚3 = 𝑚1 and

5𝑔𝑛 < 2ℎ+𝑝
′
10 6 2−𝑤+𝑝

′
10 = 2𝑝2+1 6 2𝑝.

Similarly, for 𝑔 6 0, −ℎ 6 𝑤, we have

5−𝑔𝑚 < 5 · 2−ℎ+𝑝2 6 5 · 2𝑤+𝑝2 6 2𝑝.

In all four cases,
𝑚3 = 5𝑔

−
2−𝑢𝑚 and 𝑛3 = 5𝑔

+
2−𝑣𝑛

are computed without overflow. Therefore

𝑚3

𝑛3
=
𝑚 · 2(ℎ+𝑤)+−(ℎ+𝑤)−

𝑛 · 5𝑔+−𝑔− =
𝑚 · 2ℎ+𝑤
𝑛 · 5𝑔

and 𝑥2 = 𝑥10 if and only if 𝑚3 = 𝑛3, by (3.26).
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b32/d64 b32/d128 b64/d64 b64/d128 b128/d64 b128/d128

𝑊 (𝑝2) 32 32 64 64 128 128
𝑊 (𝑝′10) 64 128 64 128 64 128

𝛾 = 2𝑘, optimizing multiplication count
𝜀 −1 −1 +1 −1 +1 +1
𝛾 8 8 8 8 8 8

range of 𝑞 −4, 8 −4, 10 −42, 39 −38, 45 −622, 617 −624, 617
min 𝜆1 satisfying (3.16) 86 145 117 178 190 242
min 𝜆2 satisfying (3.17) 17 17 17 17 17 17

chosen 𝜆1,𝑊 (𝜆1) 95, 96 159, 160 125, 128 191, 192 190, 192 253, 256
chosen 𝜆2,𝑊 (𝜆2) 32, 32 32, 32 32, 32 32, 32 32, 32 32, 32

𝜏 0 0 0 0 −1 0
Step 7 of Algo. 5 can be omitted 3 3 3 3 3 3

total table size in bytes 188 332 1344 2048 29792 39776
32-bit muls 5 9 10 16 16 36

𝛾 = 2𝑘, optimizing table size
𝜀 −1 −1 +1 −1 −1 +1
𝛾 8 16 32 32 64 64

range of 𝑞 −4, 8 −2, 5 −10, 10 −9, 12 −77, 78 −78, 78
min 𝜆1 satisfying (3.16) 86 145 117 178 190 242
min 𝜆2 satisfying (3.17) 17 35 72 72 147 147

chosen 𝜆1,𝑊 (𝜆1) 95, 96 159, 160 125, 128 191, 192 191, 192 253, 256
chosen 𝜆2,𝑊 (𝜆2) 32, 32 64, 64 96, 96 96, 96 160, 160 160, 160

𝜏 0 0 0 0 0 0
Step 7 of Algo. 5 can be omitted 3 7 7 7 7 7

total table size in bytes 188 288 720 912 5024 6304
32-bit muls 5 13 14 24 34 52

any 𝛾, optimizing multiplication count
𝜀 −1 −1 +1 −1 +1 +1
𝛾 13 13 14 14 14 14

range of 𝑞 −2, 5 −2, 6 −24, 22 −22, 26 −355, 353 −357, 353
min 𝜆1 satisfying (3.16) 86 145 117 178 190 242
min 𝜆2 satisfying (3.17) 28 28 31 31 31 31

chosen 𝜆1,𝑊 (𝜆1) 95, 96 159, 160 125, 128 191, 192 190, 192 253, 256
chosen 𝜆2,𝑊 (𝜆2) 32, 32 32, 32 32, 32 32, 32 32, 32 32, 32

𝜏 0 0 0 0 −1 0
Step 7 of Algo. 5 can be omitted 3 3 3 3 3 3

total table size in bytes 148 232 808 1232 17072 22808
32-bit muls 5 9 10 16 16 36

any 𝛾, optimizing table size
𝜀 −1 −1 +1 +1 −1 +1
𝛾 13 13 28 28 69 83

range of 𝑞 −2, 5 −2, 6 −12, 11 −12, 11 −71, 73 −60, 60
min 𝜆1 satisfying (3.16) 86 145 117 178 190 242
min 𝜆2 satisfying (3.17) 28 28 63 63 158 191

chosen 𝜆1,𝑊 (𝜆1) 95, 96 159, 160 125, 128 189, 192 191, 192 253, 256
chosen 𝜆2,𝑊 (𝜆2) 32, 32 32, 32 64, 64 64, 64 160, 160 192, 192

𝜏 0 0 0 0 0 0
Step 7 of Algo. 5 can be omitted 3 3 3 3 7 7

total table size in bytes 148 232 608 800 4860 5864
32-bit muls 5 9 12 28 34 56

Table 3.5 – Suggested parameters for Algorithm 5 on a 32-bit machine.
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b32/d64 b32/d128 b64/d64 b64/d128 b128/d64 b128/d128

𝑊 (𝑝2) 64 64 64 64 128 128
𝑊 (𝑝′10) 64 128 64 128 64 128

𝛾 = 2𝑘, optimizing multiplication count
𝜀 +1 −1 +1 −1 +1 +1
𝛾 16 16 16 16 16 16

range of 𝑞 −3, 3 −2, 5 −21, 20 −19, 23 −311, 309 −312, 309
min 𝜆1 satisfying (3.16) 86 145 117 178 190 242
min 𝜆2 satisfying (3.17) 35 35 35 35 35 35

chosen 𝜆1,𝑊 (𝜆1) 125, 128 191, 192 125, 128 191, 192 190, 192 253, 256
chosen 𝜆2,𝑊 (𝜆2) 64, 64 64, 64 64, 64 64, 64 64, 64 64, 64

𝜏 0 0 0 0 −1 0
Step 7 of Algo. 5 can be omitted 3 3 3 3 3 3

total table size in bytes 240 320 800 1160 15032 20032
64-bit muls 3 5 3 5 5 10

𝛾 = 2𝑘, optimizing table size
𝜀 +1 −1 +1 −1 −1 +1
𝛾 16 16 16 32 64 64

range of 𝑞 −3, 3 −2, 5 −21, 20 −9, 12 −77, 78 −78, 78
min 𝜆1 satisfying (3.16) 86 145 117 178 190 242
min 𝜆2 satisfying (3.17) 35 35 35 72 147 147

chosen 𝜆1,𝑊 (𝜆1) 125, 128 191, 192 125, 128 191, 192 191, 192 253, 256
chosen 𝜆2,𝑊 (𝜆2) 64, 64 64, 64 64, 64 128, 128 192, 192 192, 192

𝜏 0 0 0 0 0 0
Step 7 of Algo. 5 can be omitted 3 3 3 7 7 7

total table size in bytes 240 320 800 1040 5280 6560
64-bit muls 3 5 3 7 9 14

any 𝛾, optimizing multiplication count
𝜀 +1 −1 +1 −1 +1 +1
𝛾 13 20 28 28 28 28

range of 𝑞 −4, 3 −1, 4 −12, 11 −11, 13 −177, 177 −178, 177
min 𝜆1 satisfying (3.16) 86 145 117 178 190 242
min 𝜆2 satisfying (3.17) 28 45 63 63 63 63

chosen 𝜆1,𝑊 (𝜆1) 125, 128 191, 192 125, 128 191, 192 190, 192 253, 256
chosen 𝜆2,𝑊 (𝜆2) 64, 64 64, 64 64, 64 64, 64 64, 64 64, 64

𝜏 0 0 0 0 −1 0
Step 7 of Algo. 5 can be omitted 3 3 3 3 3 3

total table size in bytes 232 304 608 824 8744 11616
64-bit muls 3 5 3 5 5 10

any 𝛾, optimizing table size
𝜀 +1 −1 +1 +1 −1 +1
𝛾 13 20 28 28 82 83

range of 𝑞 −4, 3 −1, 4 −12, 11 −12, 11 −60, 61 −60, 60
min 𝜆1 satisfying (3.16) 86 145 117 178 190 242
min 𝜆2 satisfying (3.17) 28 45 63 63 189 191

chosen 𝜆1,𝑊 (𝜆1) 125, 128 191, 192 125, 128 189, 192 191, 192 253, 256
chosen 𝜆2,𝑊 (𝜆2) 64, 64 64, 64 64, 64 64, 64 192, 192 192, 192

𝜏 0 0 0 0 0 0
Step 7 of Algo. 5 can be omitted 3 3 3 3 7 7

total table size in bytes 232 304 608 800 4896 5864
64-bit muls 3 5 3 7 9 14

Table 3.6 – Suggested parameters for Algorithm 5 on a 64-bit machine.
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Naive method Naive method Direct method Bipartite table
converting 𝑥10 converting 𝑥2 (Section 3.3.5) method (manual

to binary64 to decimal64 implementation)
(incorrect) (incorrect) (Section 3.3.5)

min/avg/max min/avg/max min/avg/max min/avg/max

Special cases (±0, NaNs, Inf) 18/–/164 21/–/178 12/–/82 11/–/74
𝑥2, 𝑥10 of opposite sign 30/107/188 44/124/179 15/30/76 16/31/73
𝑥2 normal, same sign, “easy” cases 31/107/184 48/132/180 25/57/118 21/43/95
𝑥2 subnormal, same sign, “easy” cases 45/106/178 89/119/179 153/163/189 19/27/73
𝑥2 normal, same sign, “hard” cases 60/87/186 39/78/180 45/56/139 29/40/119
𝑥2 subnormal, same sign, “hard” cases 79/106/167 78/107/179 171/177/189 34/49/94

Table 3.7 – Timings (in cycles) for binary64–decimal64 comparisons.

3.3.7 Experimental results

For each combination of a binary basic IEEE format and a decimal one, we implemented
the comparison algorithm consisting of the first step (Section 3.3.3) combined with the version
of the second step based on a bipartite table (Section 3.3.5). We used the parameters suggested
in the second part of Table 3.6, that is for the case when 𝛾 is a power of two and one tries to
reduce table size.

The implementation was aided by scripts that take as input the parameters from Tables 3.2
and 3.6 and produce C code with GNU extensions [241]. Non-standard extensions are used for
128-bit integer arithmetic and other basic integer operations. No further effort at optimization
was made.

Our implementations, the code generator itself, as well as various scripts to select the
parameters are available at

http://hal.archives-ouvertes.fr/hal-01021928/.

The code generator can easily be adapted to produce other variants of the algorithm.
We tested the implementations on random inputs generated as follows. For each decimal

exponent and each quantum [117, 2.1.42], we generate a few random significands and round
the resulting decimal numbers upwards and downwards to the considered binary format.
(We exclude the decimal exponents that merely yield to underflow or overflow on the binary
side.)

Table 3.8 reports the observed timings for our random test data. The generated code was
executed on a system equipped with a quad-core Intel Core i5-3320M processor clocked at
2.6 GHz, running Linux 3.16 in 64 bit mode. We used the gcc 4.9.2 compiler, at optimization

b32 b64 b128

d64 41 36 75
d128 235 266 61

Table 3.8 – Average run time (in cycles) for the bipartite table method, using the parameters
suggested in Table 3.6 for 𝛾 = 2𝑘, optimizing table size.

http://hal.archives-ouvertes.fr/hal-01021928/
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level -O3, with the -march=native flag. The measurements were performed using the
Read Time Stamp Counter instruction (RDTSC) after pipeline serialization. The serialization
and function call overhead was estimated by timing an empty function and subtracted off.
The caches were preheated by additional comparison function calls, the results of which were
discarded.

It can be observed that “balanced” comparisons (d64/b64, d128/b128) perform signifi-
cantly better than “unbalanced” ones. A quick look at the generated assembly code suggests
that there is room for performance improvements, especially in cases involving 128-bit floating
point formats.

We performed more detailed experiments in the special case of binary64–decimal64
comparisons. In complement to the generated code, we wrote a version of the bipartite
table method with some manual optimization, and implemented the method based on direct
tabulation of 𝑓(ℎ) presented in Section 3.3.5. We tested these implementations thoroughly
with test vectors that extensively cover all floating-point input classes (normal numbers,
subnormals, Not-A-Numbers, zeros, and infinities) and exercise all possible values of the
normalization parameter 𝜈 (cf. Section 3.3.3) as well as all possible outcomes for both of the
algorithm’s steps.

Finally, we compared them for performance to the naive comparison method where one of
the inputs is converted to the radix of the other input. These experimental results are reported
in Table 3.7. In the last two rows, “easy” cases are cases when the first step of our algorithm
succeeds, while “hard” cases refer to those for which running the second step is necessary.

3.3.8 Conclusion

Though not foreseen in the IEEE 754-2008 Standard, exact comparisons between floating-
point formats of different radices would enrich the current floating-point environment and
make numerical software safer and easier to prove.

In this Section, we have investigated the feasibility of such comparisons. A simple test
has been presented that eliminates most of the comparison inputs. For the remaining cases,
two algorithms were proposed, a direct method and a technique based on a more compact
bipartite table. For instance, in the case of binary64–decimal64, the bipartite table uses only
800 bytes of table space.

Both methods have been proven, implemented and thoroughly tested. According to our
experiments, they outperform the naive comparison technique consisting in conversion of
one of the inputs to the respectively other format. Furthermore, they always return a correct
answer, which is not the case of the naive technique.

Since the algorithmic problems of exact binary to decimal comparison and correctly
rounded radix conversion are related, future investigations should also consider the possible
reuse of tables for both problems. Finally, one should mention that considerable additional
work is required in order to enable mixed-radix comparisons in the case when the decimal
floating-point number is stored in dense-packed-decimal representation.

3.4 Towards Mixed-Radix Computational Operations

In the last Section 3.3, we have presented a first way to link the disjoint worlds of binary
and decimal floating-point arithmetic in IEEE754-2008: we presented algorithms to compare
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binary floating-point numbers with numbers in the decimal radix without endangering the
boolean result by the oddities of rounded radix conversion. While this first enhancement
is valuable, it does not seem to be enough: we would like to see the closedness of the
IEEE754-2008 environment for all formats and radices, under all computational operations.

In this Section, we address exactly this question: is it possible to design algorithms for the
basic computational operations, such as addition, multiplication or division, in a mixed-radix
setting, i.e. with the operands and results as IEEE754-2008 floating-point numbers of both
radices, at the user’s choice. As a matter of course, this work must be guided by the goal of
achieving correct rounding for such mixed-radix operations: as we explained in Section 3.1,
the spirit of IEEE754 lies in this correct-rounding goal.

This Section is partly based, for the part in Section 3.4.2, on joint work that was eventually
published [145] by Olga Kupriianova, a Ph.D. student we supervised, and, for the parts in
Sections 3.4.1 and 3.4.3, on work published in the article [125].

3.4.1 Mixed-Radix Fused-Multiply-Add: Motivation and Challenges

The basic computational operations defined by IEEE754 are addition, subtraction, mul-
tiplication, division, square root, and, since 2008, Fused-Multiply-And-Add (FMA) [117].
This latter operation computes 𝑎 × 𝑏 + 𝑐 with one, single, correct rounding. We wish to
provide algorithms for a mixed-radix implementation of these computational operations, i.e.
algorithms that take floating-point numbers of both radices –two and ten– supported by the
IEEE754-2008 Standard [117] and compute a correctly rounded floating-point result, also in
one of these two radices. These mixed-radix arithmetical operations do hence not correspond
to one operator only but to quite a number of different implementations: for example, a
mixed-radix addition comes (at least) in the variants binary plus binary gives decimal, binary
plus decimal gives binary, binary plus decimal gives decimal and decimal plus decimal
gives binary. This number of different mixed-radix operation flavors is still increased by the
fact that IEEE754-2008 defines different formats for each radix, such as binary32, binary64,
decimal64 or decimal128 [117]. In principle, even mixed-radix heterogeneous operations, like
a binary64 plus decimal128 gives binary32 -addition, might eventually be considered.

To get started, it is however easier to consider, for the time being, only mixed-radix
operations with operands and results of two IEEE754 floating-point formats, one binary
and one decimal. In order not to be mislead to corner-case effects, the two formats should
provide comparable accuracy, i.e. have precisions that are comparable provided appropriate
conversion. For instance, as detailed in Section 3.1, the IEEE754 binary64 format provides
𝑘 = 53 bits of binary precision, which is equivalent to a basic relative error of 𝑢 = 2−53. The
IEEE754 decimal format provides 𝑘 = 16 digits of decimal precision, which is equivalent to a
basic relative error of 𝑢 = 1/2×10−16 = 2−54.15.... The two formats hence provide comparable
accuracy. We therefore choose the IEEE754 binary64 and decimal64 formats for our work on
mixed-radix operations.

We are hence interested in algorithms for the families of mixed-radix operations with
binary64 and decimal64 operands and outputs, covering the basic operations addition, sub-
traction, multiplication, division, square root and FMA. We want our algorithms to provide
correct rounding in any of the IEEE754-2008 rounding modes [117] that might be chosen for
the radix our mixed-radix operation compute their output in 14. We also want our mixed-

14. As explained in Section 3.1, IEEE754-2008 defines several rounding modes and models the rounding-mode
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radix operations to behave like any other IEEE754 computational operation and to signal
the appropriate IEEE754 floating-point exceptions [117], which result in the setting of the
appropriate IEEE754 flags 15 under default exception handling 16. For the reasons set out
already in Section 3.3.1, we therefore consider mixed-radix operations that end up being
implemented by “emulation” using integer arithmetic. Similarly, as in Section 3.3.1, we will
suppose that the IEEE754 decimal formats, such as the decimal64 format we use, are encoded
in the IEEE754 binary encoding (BID), i.e. that access to a binary representation of the decimal
significand is straightforward [117].

Given this setting, let us now consider where the foremost challenges of mixed-radix
floating-point operations lie. Let us admit the following notations:

— Binary operands are denoted 2𝐸 ·𝑚, where 𝐸 ∈ Z is a binary exponent in some domain
determined by the used format and 𝑚 ∈ Z is a signed integer significand satisfying
2𝑘−1 6 |𝑚| 6 2𝑘 − 1, where 𝑘 is the precision, for instance 𝑘 = 53 for binary64.

— Decimal operands are denoted 10𝐹 · 𝑛, where 𝐹 ∈ Z is a decimal exponent in some
domain defined by the used format and 𝑛 ∈ Z is a signed integer significand satisfying
1 6 |𝑛| 6 10𝑙 − 1 where 𝑙 is the precision, for instance 𝑙 = 16 for decimal64.

— The mixed-radix operation computes either a binary output 2𝐺 · 𝑝, with 𝐺 ∈ Z appropri-
ately bounded and 𝑝 ∈ Z a signed integer significand bounded as above, or a decimal
output 10𝐻 · 𝑞, with 𝐻 ∈ Z bounded and 𝑞 ∈ Z a signed integer significand bounded as
before.

For most problems in computer arithmetic, addition is the most easy operation to consider.
As we are going to see just below, for mixed-radix operations, it is not: multiplication is
actually the most easy operation to implement. As a matter of fact, computing a correctly
rounded result 2𝐺 · 𝑝 resp. 10𝐻 · 𝑞 to a mixed-radix multiplication actually means determining
the two integers 𝐺 and 𝑝 (resp. 𝐻 and 𝑞) such that 2𝐺 · 𝑝 is closest (in round-to-nearest
mode) to 2𝐸+𝐹 · 5𝐹 ·𝑚 · 𝑛. Assuming that evaluating 𝐺 is not difficult, correctly rounding the
mixed-radix multiplication therefore means determining 𝑝 closest to 2𝐸+𝐹−𝐺 · 5𝐹 ·𝑚 · 𝑛.

Correctly determining which value of an integer 𝑝 is closest to 2𝐸+𝐹−𝐺 · 5𝐹 ·𝑚 · 𝑛 requires
correctly determining whether 2𝐸+𝐹−𝐺 · 5𝐹 ·𝑚 · 𝑛 is above or below the mid-point between
the integers around 2𝐸+𝐹−𝐺 · 5𝐹 ·𝑚 · 𝑛. Similarly, correctly determining the largest integer
just below or at 2𝐸+𝐹−𝐺 · 5𝐹 ·𝑚 · 𝑛, i.e. performing round-down, means to be able to decide
whether the exact value 2𝐸+𝐹−𝐺 · 5𝐹 ·𝑚 · 𝑛 is just above, at or below an integer candidate 𝑝.

In other words, correct rounding of a mixed-radix multiplication means determining
whether an approximation to 2𝐸+𝐹−𝐺 · 5𝐹 ·𝑚 ·𝑛 is below or above the middle of two integers
or below or above an integer. The set of the middle of the integers together with the set of the
integers is described by 1/2 · 𝑝′, where 𝑝′ ∈ Z is an integer.

Correct rounding for a mixed-radix multiplication in any rounding mode means deciding
whether 2𝐸+𝐹−𝐺+1 · 5𝐹 ·𝑚 · 𝑛 is below, at or above a certain integer 𝑝′. This decision problem

that applies to an operation essentially as global state of the floating-point environment. Thorough lecture of
the IEEE754-2008 Standard actually reveals that the Standard distinguishes between the rounding-mode for
the binary radix and the rounding-mode for the decimal radix and that the global state of the floating-point
environment hence contains two current rounding-modes, one for each radix [117].

15. IEEE754-2008 also models its (sticky) floating-point flags as global state. Even though the rounding-mode is
separate for both IEEE754 radices, the IEEE754-2008 global state for the flags is shared by the operations of both
radices [117]. The inexact flag may for example be raised as a result of a binary or a decimal operation that is
inexact.

16. See also Section 2.3 for details.



80 Chapter 3. Software to Support an Enhanced Floating-Point Environment

is quite the same as the one we have already described and handled in Section 3.3, where
we first addressed mixed-radix algorithms, proposing a mixed-radix comparison. Indeed,
whatever the accuracy requirements be, we will always be able to design algorithms to
compute approximations to 2𝐸+𝐹−𝐺+1 · 5𝐹 · 𝑚 · 𝑛. Hence, if we know a lower bound on
the smallest non-zero distance between an integer 𝑝′ and 2𝐸+𝐹−𝐺+1 · 5𝐹 ·𝑚 · 𝑛, it suffices to
approximate this quantity 2𝐸+𝐹−𝐺+1 · 5𝐹 ·𝑚 · 𝑛 with an error less than this non-zero distance
to deduce a correct rounding.

Determining a lower bound on the non-zero distance of 2𝐸+𝐹−𝐺+1 ·5𝐹 ·𝑚·𝑛 and an integer
𝑝′ is easy, utilizing the same techniques based on rational approximation as we used them in
Section 3.3, Paragraph 3.3.4. Actually, determining that non-zero distance is equivalent to
computing the lowest distance of 2𝐺−𝐸−𝐹−1

5𝐹
to the fraction 𝑚·𝑛

𝑝′ , where 𝑚,𝑛 and 𝑝′ are integers
for which we know lower and upper bounds, typically clamping them into one binade or
decade. Similarly, we know that 𝐸,𝐹 and 𝐺 are integers with small ranges that, by the fact
𝑚,𝑛 and 𝑝′ are small ranges, are closely interconnected. Hence we can compute the best
(non-zero-error) approximations [49] of 2𝐺−𝐸−𝐹−1

5𝐹
by fractions ℎ

𝑝′ , taking for ℎ the bounds on
the product 𝑚 · 𝑛, represented by ℎ. This way, we can easily obtain a lower-bound on the
least non-zero distance of 𝑚·𝑛

𝑝′ with respect to 2𝐺−𝐸−𝐹−1

5𝐹
; this lower bound will be safe, even

though it might not be tight, as the possible values for the numerator ℎ we are going to find
might possibly not be products of two integers 𝑚 and 𝑛 with the given ranges 17.

Implementing mixed-radix floating-point multiplications is therefore not very difficult: it
suffices to analyze the precise ranges of 𝐸,𝐹 and 𝐺, as well as of 𝑚,𝑛 and 𝑝′ corresponding
to a set of (binary and decimal) input and output formats, compute the lower bounds on the
possible approximation cases and write –in a straightforward way– approximation code with
an accuracy better than to what is needed to overcome the worst case, depending on these
lower bounds.

The situation for mixed-radix division and square root is quite similar to mixed-radix
multiplication. In order to enable correctly rounded mixed-radix multiplication, we look for
integers ℎ = 𝑚 · 𝑛 and rounding boundary significands 𝑝′ such that ℎ

𝑝′ is close to 2𝐴

5𝐵
, where

𝐴 = 𝐺−𝐸−𝐹 − 1 and 𝐵 = 𝐹 . Both 𝐴 and 𝐵 are integers in quite a small range. For division,
be it a division of a binary floating-point number by a decimal one or vice-versa and be it
with a binary or a decimal result, we eventually look also for integers ℎ and 𝑟 derived from
the input and rounding boundary significands 𝑚, 𝑛 and 𝑝′ such that ℎ𝑟 is close to 2𝐴

5𝐵
, where 𝐴

and 𝐵 are still integers in small ranges: 𝐴 and 𝐵 are just derived differently from the input
and output exponents. Square root is just slightly different: we must look for inputs 2𝐸 ·𝑚
resp. 10𝐹 · 𝑛 the square root of which is close to rounding boundaries 10𝐻 · 𝑞′ resp. 2𝐺 · 𝑝′. In
other words we look for inputs 2𝐸 ·𝑚 resp. 10𝐹 · 𝑛 close to values 102𝐻 · 𝑞′2 resp. 22𝐺 · 𝑝′2.
Taking in this case ℎ = 𝑞′2 resp. ℎ = 𝑝′2, we however end up looking for integers 𝑚, resp. 𝑛,
and ℎ such that 𝑚

ℎ , resp. 𝑛
ℎ , is close to 2𝐴

5𝐵
, where 𝐴 and 𝐵 are still integers in small ranges.

Therefore mixed-radix division and square root require some arithmetical algorithm design
work but are no real challenge with existing approaches.

Among the five 18 IEEE754 basic operations, the real challenge for mixed-radix arithmetic
comes from mixed-radix addition and subtraction 19. Typically, for a floating-point addition,

17. We are just using the fact that the product of two integers is an integer, while, of course, not all integers are
products of two integers.

18. six including FMA
19. As floating-point subtraction is just floating-point addition with a change in sign of the subtrahend operand,
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two cases can be distinguished: the case when the two input operands are sufficiently close
in terms of exponent that their aligned significands will lead to cancellation when subtracted
one from the other and the other case when they are sufficiently far in terms of magnitude
such that the result’s order of magnitude is essentially the one of the bigger of the operands.
The first of these two cases is commonly called near path, the latter far path [77, 197].

Uniform-radix correctly rounded floating-point addition is based, for the near path, on
the observation that when cancellation occurs, the floating-point operation becomes naturally
exact, i.e. does not require any rounding [140, 197]. This case corresponds to the case when
Sterbenz’ lemma can be applied [197, 238]. For mixed-radix addition, there is no reason why
this cancellation case should become exact: e.g. when both input operands are in decimal
floating-point arithmetic, both 10 and−9.9 are representable. Their sum of course is 0.1 which
clearly is not representable in binary floating-point arithmetic. A decimal plus decimal to
binary mixed-radix addition can hence not suppose that no rounding occurs in near path cases.
Furthermore, when the two operands to a mixed-radix addition are not in the radix, some sort
of conversion of the binary operand to the decimal radix or vice versa will be needed. This
conversion will always induce some error – at least in general 20. While cancellation in the
near-path makes the operation become exact for uniform-radix cases, the same cancellation
in the mixed-radix case will amplify this conversion error:

𝑎+ 𝑏 · (1 + 𝜀) = (𝑎+ 𝑏) ·
(︂

1 +
𝑏

𝑎+ 𝑏
· 𝜀
)︂
, |𝑎+ 𝑏| ≪ |𝑏| .

And even if we find ways to compute lower bounds on this catastrophic cancellation results of
mixed-radix addition on its near path, i.e. if we find ways to make the conversion sufficiently
accurate that some accuracy is left once the cancellation amplifies the error, the result of this
(approximate) mixed-radix addition may itself be close to a rounding boundary of the output
radix, preventing us to return the correctly rounded result with certainty.

On the far path, mixed-radix addition is no less difficult: assume, for example, that we
want to implement a binary plus binary gives decimal addition. Denote the two operands
with 𝑎 and 𝑏 and the result with 𝑐. Now suppose that we look for a binary floating-point
number 𝑎 very close to a decimal floating-point number 𝑐. Such pairs of numbers (𝑎, 𝑐)
are typically the cases for which radix conversion is hard to round in a directed rounding
mode [49] or cases for which our mixed-radix comparison, presented in Section 3.3, needs
to go for the accurate step. Hence 𝑎 is very close to 𝑐. Let 𝑏 now be the binary floating-
point number closest to the distance between 𝑐 and 𝑎, i.e. let 𝑏 = ∘(𝑐 − 𝑎). Now suppose
these values to be the input to a mixed-radix addition 𝑎 + 𝑏, yielding a decimal number 𝑐′.
As 𝑎 is very close to the decimal number 𝑐, and 𝑏 is close to the distance between 𝑐 and 𝑎,
𝑎+ 𝑏 = 𝑐+ (𝑎− 𝑐)−∘(𝑐− 𝑎) will be extremely close to 𝑐, making correct rounding to decimal
in a directed rounding mode very difficult.

As an example take the two IEEE754 binary64 numbers

𝑎 = 2−52 · 9007167306718907 = 1.99999290611405799999999999272404238581 . . .

we are going to continue the discussion only for “addition”, subsuming subtraction.
20. This is not entirely correct. As 2 divides 10, a binary to decimal conversion, where the binary exponent

range is bounded, can be made exact for any binary floating-point input, provided the decimal precision is large
enough, typically in the order of several hundred decimal digits for IEEE754 binary64. We already used this fact
in Section 3.2.3 and are going to exploit it again in Section 3.4.3.
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and
𝑏 = 2−138 · 2535301200456459 = 10−27 · 7.27595761418 . . .

Their sum 𝑎+ 𝑏 is

𝑎+ 𝑏 = 1.99999290611405800000000000000000000000000056 . . .

which makes directed rounding down to the IEEE754 decimal format extremely difficult: the
rounded-down result is 10−15 · 1999992906114058, just slightly below 𝑎+ 𝑏.

Even though we can construct exemplary cases where correct rounding of mixed-radix
addition is hard to perform, the cases we can attain are only exemplary. We have no simple,
systematic way to look for inputs to mixed-radix addition for which rounding is hard in
round-to-nearest or a directed rounding mode. We did some research on trying to find
algorithms to at least compute a safe, if not tight lower bound on the minimum non-zero
distance between the inputs of a mixed-radix addition and rounding boundaries of its output.
We are going to report on this research in Section 3.4.2 but we have to admit that the result
we took away from this research effort is the understanding that such lower bounds cannot
efficiently be computed.

Therefore we propose another approach to implementing a correctly rounded mixed-radix
addition, without precomputing such lower bounds, “recycling” an idea we have already
used in Section 3.2.3, where we could not precompute lower bounds either, as the input had
arbitrary precision. We are going to present this approach in Section 3.4.3.

However, while we are at implementing a mixed-radix addition, with all the difficulties
we encounter, we propose to immediately strive at designing a correctly rounded mixed-radix
Fused-Multiply-And-Add (FMA) operation, that takes three operands 𝑎, 𝑏, 𝑐, each in either as
a binary or a decimal floating-point number, and computes a correctly rounded result 𝑑, in
either a binary or a decimal floating-point format. This result 𝑑 is the floating-point number
closest (in round-to-nearest mode), or just below or above (in a directed rounding mode),
to the exact value 𝑎× 𝑏+ 𝑐. We propose to implement FMA immediately for the following
reasons:

— On the one hand, the multiplication part of an FMA can be made exact: exact multi-
plication of the significands is possible, the exponents to radices 2 and 5 are readily
computed. Mixed-radix FMA is hence no more difficult than mixed-radix addition.

— On the other hand, once a mixed-radix FMA is implemented, providing the full set of
mixed-radix addition, subtraction and multiplication operations is trivial. Indeed, it
suffices to set certain operands to 0, 1 or −1.

— Finally, if some additional precision is accounted for the operands of a mixed-radix
FMA, mixed-radix division and square root can also be reduced to mixed-radix FMA. In
fact, it suffices to compute mixed-radix division or square root results with just enough
accuracy to determine the closest rounding boundary 𝑓 in the output format 21. The
significand of such a rounding boundary takes just 1 bit more of precision, be the output
format in binary or in decimal 22. Correctly rounding a division 𝑎/𝑏 or a square root
of 𝑎 means deciding whether 𝑎/𝑏 is less, equal or greater that rounding boundary 𝑓 .

21. If determining the closest rounding boundary is difficult, correctly rounding the available approximation is
not difficult in the first place [166].

22. This is trivial for binary. In decimal, the rounding boundaries that are integer significand midpoints are
half-integers, which boils down to an integer mantissa of 1 bit more.
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This means correctly computing the sign of 𝑏× 𝑓 − 𝑎 resp. 𝑓 × 𝑓 − 𝑎, which is easy if a
mixed-radix FMA is available.

A mixed-radix FMA hence encompasses all difficulties of mixed-radix floating-point arith-
metic and gives us a way to easily provide all basic operations, +,−,×, /,√ and FMA itself,
with one algorithmic kernel.

This is the reason why we set out to try to compute hard-to-round cases for mixed-radix
FMA first. We are going to report on this research in the next Section 3.4.2. Our report is
however a negative one; no such hard-to-round cases search was possible. In the subsequent
Section 3.4.3, we are then going to present an algorithm that provides for correct rounding of
a mixed-radix FMA without knowledge of hard-to-round cases.

3.4.2 Hardly Feasible: Computing Hard-To-Round Cases

Implementing a fast but correctly rounded mixed-radix FMA, computing 𝑎× 𝑏+ 𝑐, where
each of 𝑎, 𝑏, 𝑐 and the result are either a binary or a decimal IEEE754 floating-point number,
would be easy if only we had knowledge of the particular input triplet (𝑎, 𝑏, 𝑐) for which
the infinitely precise result 𝑎 × 𝑏 + 𝑐 is closest to a rounding boundary 𝑓 of the output
floating point format, without being precisely at a rounding boundary. Again, the rounding
boundaries are points where the rounding changes from one floating-point number to the
subsequent floating-point number; their set is formed by the floating-point numbers itself
and the midpoint of floating-point numbers [166].

If we knew that hardest-to-round triplet (𝑎, 𝑏, 𝑐), we could simply determine its relative
distance to the next rounding boundary 𝑓 :

𝜂 =

⃒⃒
⃒⃒𝑎× 𝑏+ 𝑐

𝑓
− 1

⃒⃒
⃒⃒

and design our implementation around the following, well-known algorithmic scheme [197,
264]:

1. Approximate 𝑎× 𝑏+ 𝑐 with a relative error less than 1
2 𝜂.

2. With the approximation, determine the closest rounding boundary 𝑓 .

3. If the approximation is (relatively) closer to 𝑓 than 𝜂, the unknown, infinitely precise
result must be at the rounding boundary. As weird as it sounds, correct rounding can
hence be obtained by rounding the rounding boundary.

4. Otherwise, rounding the approximation yields to the same correct rounding as if the
unknown, infinitely precise result were used; if it did not, we had a contradiction to the
statement that 𝜂 corresponds to the triplet (𝑎, 𝑏, 𝑐) for which the infinitely precise result
is closest to the rounding boundary [173, 197, 264].

Hence, we are driven to set out for computing this hardest-to-round cases. While we are at
it, we can also compute other hard-to-round cases, as they serve for testing purposes [27, 173].
However, computing hard-to-round and the hardest-to-round case can of course not be done
by exhaustively enumerating all possible input triplets (𝑎, 𝑏, 𝑐) and determining the relative
distance to the closest rounding boundary: the sheer number of possible inputs, in the order
of 2(64−3)·3 for 64 bit wide formats, makes this approach infeasible [173].

The only hope we might have lies in the applicability of algorithms allowing to compute
the smallest non-zero relative distance of a rational fraction 𝑝/𝑞 to some real number 𝛼 ∈ R;



84 Chapter 3. Software to Support an Enhanced Floating-Point Environment

where the numerator 𝑝 and the denominator 𝑞 are bounded in magnitude [49]. We had
already applied this theory in Section 3.3 for mixed-radix comparison and we are going to
use it again for bounding cancellation in near-path mixed-radix subtraction in Section 3.4.3.
The algorithms developed for this kind of search allow to compute the closest, non-exact left-
and right approximation [49] of 𝛼 by 𝑝/𝑞: they allow us to determine

⃒⃒
⃒⃒𝑝
𝑞
− 𝛼

⃒⃒
⃒⃒ ,

where 𝑝 and 𝑞 are integers within known bounds, 𝑝min 6 𝑝 6 𝑝max and 𝑞min 6 𝑞 6 𝑞max.
To start with, it is easy to see that we can encompass the result of the FMA’s multiplication

part, 𝑎 × 𝑏, as 2𝐴
′′ · 5𝐵′′ ·𝑚, where 𝑚 ∈ N is an integer significand between some bounds,

𝑚min 6 𝑚 6 𝑚max, typically a binade. We can use this representation independently of the
radix of the inputs. As a matter of course, the integer exponents 𝐴′′ ∈ Z and 𝐵′′ ∈ Z are also
bounded; it is easy to deduce the bounds from the formats’ description in the IEEE754-2008
Standard [117]. We can hence state 𝐴′′

min 6 𝐴
′′ 6 𝐴′′

max and 𝐵′′
min 6 𝐵

′′ 6 𝐵′′
max.

Similar modeling is, of course, possible for the additive part of a mixed-radix FMA: we
notate 𝑐 = 2𝐶

′′ · 5𝐷′′ · 𝑛, with 𝑛 ∈ N such that 𝑛min 6 𝑛 6 𝑛max and 𝐶 ′′, 𝐷′′ ∈ Z bounded by
𝐶 ′′

min 6 𝐶 ′′ 6 𝐶 ′′
max and 𝐷′′

min 6 𝐷′′ 6 𝐷′′
max. Finally, the rounding boundary 𝑓 can also be

expressed as 𝑓 = 2𝐸 · 5𝐹 · 𝑞, this time with 𝑞 ∈ Z such that 𝑞min 6 |𝑞| 6 𝑞max and 𝐸,𝐹 ∈ Z
with 𝐸min 6 𝐸 6 𝐸max and 𝐹min 6 𝐹 6 𝐹max.

Given this modelization, computing the hardest-to-round case 𝜂 boils down to finding
𝐴′′, 𝐵′′, 𝐶 ′′, 𝐷′′, 𝐸, 𝐹 as well as 𝑚,𝑛, 𝑞 within the given bounds such that

𝜂 =

⃒⃒
⃒⃒
⃒
2𝐴

′′ · 5𝐵′′ ·𝑚 ± 2𝐶
′′ · 5𝐷′′ · 𝑛

2𝐸 · 5𝐹 · 𝑞 − 1

⃒⃒
⃒⃒
⃒

is minimal without being zero.
This problem can still be simplified a little bit: the exponents 𝐸 and 𝐹 can be combined

with 𝐴′′, 𝐵′′, 𝐶 ′′ and 𝐷′′. Let 𝐴′ = 𝐴′′−𝐸, 𝐵′ = 𝐵′′−𝐹 , 𝐶 ′ = 𝐶 ′′−𝐸 and 𝐷′ = 𝐷′′−𝐹 . Then
it suffices to consider the problem of finding the minimum non-zero value of

𝜂 =

⃒⃒
⃒⃒
⃒
2𝐴

′ · 5𝐵′ ·𝑚 ± 2𝐶
′ · 5𝐷′ · 𝑛

𝑞
− 1

⃒⃒
⃒⃒
⃒

where the bounds on 𝑚,𝑛, 𝑞 are unchanged and where the bounds on 𝐴′, 𝐵′, 𝐶 ′ and 𝐷′ can
be trivially deduced from the bounds on 𝐴′′, 𝐵′′, 𝐶 ′′ and 𝐷′′.

As some or all of the exponents 𝐴′, 𝐵′, 𝐶 ′ and 𝐷′ may become negative, we are not yet
quite at an integer fraction problem. Therefore, it is reasonable to set

𝛾 = min
(︀
𝐴′′

min − 𝐸′′
max, 𝐶

′′
min − 𝐸′′

max
)︀

and
𝛿 = min

(︀
𝐵′′

min − 𝐹 ′′
max, 𝐷

′′
min − 𝐹 ′′

max
)︀
.

With 𝐴 = 𝐴′ − 𝛾, 𝐵 = 𝐵′ − 𝛿, 𝐶 = 𝐶 ′ − 𝛾 and 𝐷 = 𝐷′ − 𝛾 the problem becomes

𝜂 =
1

2−𝛾 · 5−𝛿
⃒⃒
⃒⃒2
𝐴 · 5𝐵 ·𝑚 ± 2𝐶 · 5𝐷 · 𝑛

𝑞
− 2−𝛾 · 5−𝛿

⃒⃒
⃒⃒
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where we can now state that 0 6 𝐴 6 𝐴max, 0 6 𝐵 6 𝐵max, 0 6 𝐶 6 𝐶max and 0 6 𝐷 6 𝐷max.
The upper bounds are readily computed.

Some under-estimate for 𝜂 can still be computed for the addition case: we can consider
the integer 𝑧 = 2𝐴 · 5𝐵 ·𝑚 + 2𝐶 · 5𝐷 · 𝑛 with no more information than some easily computed
lower and upper bounds and then consider the integer fraction problem

𝜂′ =

⃒⃒
⃒⃒𝑧
𝑞
− 𝛼

⃒⃒
⃒⃒

where 𝛼 is set to 2−𝛾 · 5−𝛿. As there are for different exponents, 𝐴, 𝐵, 𝐶 and 𝐷 involved and
for each combination of them a different 𝑧 needs to be considered, bounded and input into
an integer fraction problem, this is already pretty challenging, but still feasible, in particular,
as in the case when one of the two terms 2𝐴 · 5𝐵 ·𝑚 or 2𝐶 · 5𝐷 · 𝑛 is preponderant several
subsequent values of the exponents can be combined into one, slightly larger interval of
admissible values for 𝑧.

For the subtraction case where 𝑧 would be given as 𝑧 = 2𝐴 · 5𝐵 ·𝑚 − 2𝐶 · 5𝐷 · 𝑛 we get to
the point where there is the rub: no reasonable bounds can be found for 𝑧, in particular for
the cases when 𝐴 and 𝐵 make 2𝐴 · 5𝐵 ·𝑚 and 2𝐶 · 5𝐷 · 𝑛 cancel.

Currently, no solution seems to exist for this problem or we ignore it, although we have
spent considerable amount of time searching such a solution. This is why we ended up
considering another approach, based on the same idea we used when we had no access to
worst-case accuracy values for decimal-to-binary conversion in Section 3.2.3. We are going to
explain this approach in the next Sections.

3.4.3 A Correctly Rounded Mixed-Radix Fused-Multiply-Add

The input of the mixed-radix FMA algorithm are either binary64 or decimal64 with the
possibility of representing the midpoints by slightly increasing the precision. In a similar
manner to what we stated already informally in Section 3.4.1, those two formats are defined
by the following equations:

2𝐸 ·𝑚; with 254 6 |𝑚| < 255;

− 1130 6 𝐸 6 969; 𝑚,𝐸 ∈ Z,
(3.27)

and
10𝐹 · 𝑛 = 2𝐽 · 5𝐾 · 𝑟; with 254 6 |𝑟| < 255; 𝑟 ∈ Z
− 452 6 𝐽 6 385; −421 6 𝐾 6 385; 𝐽,𝐾 ∈ Z.

(3.28)

Both formats can also be combined into a single representation of the mixed-radix unified
format, with pessimist bounds on the exponents such as, given 𝑎 an input of the FMA we
have:

𝑎 = 2𝑁𝑎 · 5𝑃𝑎 · 𝑡𝑎; with 254 6 |𝑡𝑎| < 255; 𝑡𝑎 ∈ Z
− 1130 6 𝑁𝑎 6 969; −421 6 𝑃𝑎 6 385; 𝑁𝑎, 𝑃𝑎 ∈ Z.

(3.29)

The algorithm that performs a fast and correctly rounded FMA defined with Algorithm 7
can be split in several parts. The first step is the decomposition of the binary64 and decimal64
inputs into the explicit format of sign, exponents and significand. Throughout this algorithm,
we will analyze the bounds of this variables because we want to make sure that we can store
them on machine words: for the exponent on a signed 32 bit integer machine word and for
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the significand on one or several unsigned 64 bit integer machine words. With this internal
format, we compute an error-free mixed-radix multiplication. Then we perform a test to
decide which addition/subtraction algorithm to use, which we will describe in more details
later. According to the result of this test, we convert the operands into an internal binary
format and perform either a far-path addition/subtraction, or a near-path subtraction. We
will then test if the final rounding in the output radix is possible with this fast-computed
result. If the result is too close to a midpoint 𝑓 and we cannot decide what is the correct
floating-point value that should take the result according to the current rounding mode [66].
In that case we will have an extra computation step, called the recovery phase, to get those
last bits of precision needed to decide how to round the result.

Input: 𝑎, 𝑏 and 𝑐, binary64 or decimal64 numbers
Output: 𝑅 = 2𝐺 · 𝑝 in binary or 𝑅 = 10𝐻 · 𝑞 in decimal
𝜓 ← 𝑎× 𝑏;
if it is an “addition” or

⃒⃒
⃒𝜓𝑐
⃒⃒
⃒ /∈ [12 ; 2] then

𝑇1 ← 2𝛾1 · 𝑣1 = 𝜓 · (1 + 𝜀𝑇1𝐹𝑃 );
𝑇2 ← 2𝛾2 · 𝑣2 = 𝑐 · (1 + 𝜀𝑇2𝐹𝑃 );
𝜙← (𝑇1 ± 𝑇2)(1 + 𝜀𝜙𝐹𝑃 ) with the “far-path” binary addition/subtraction;

else
𝑇1 ← 2Γ1 · 𝑤1 = 𝜓 · (1 + 𝜀𝑇1𝑁𝑃 );
𝑇2 ← 2Γ2 · 𝑤2 = 𝑐 · (1 + 𝜀𝑇2𝑁𝑃 );
𝜙← (𝑇1 − 𝑇2)(1 + 𝜀𝜙𝑁𝑃 ) with the “near-path” binary subtraction;

end
𝜌← 2𝐶 · 𝑔 = 𝜙 resp. 𝜌← 10𝐻 · 2−10 · 𝑞 = 𝜙 · (1 + 𝜀𝜌𝐷);
if 𝜌 = (𝑎× 𝑏+ 𝑐)(1 + 𝜀𝜌) can be rounded correctly then

return 𝑅← ∘ (𝜌) correctly rounded into the output format ;
else

Compute integer rounding boundary significand 𝑓 such that
2𝐶 · 210 · 1/2 · 𝑓 resp. 10𝐻 · 2−10 · 210 · 1/2 · 𝑓 is the nearest rounding boundary;
𝛼← 2𝐿−𝑍𝑚𝑖𝑛 · 5𝑀−𝐹𝑚𝑖𝑛 · (𝑎× 𝑏) + 2𝑁𝑐−𝑍𝑚𝑖𝑛 · 5𝑃𝑐−𝐹𝑚𝑖𝑛 · 𝑐− 2𝐹2−𝑍𝑚𝑖𝑛 · 5𝐹5−𝐹𝑚𝑖𝑛 · 𝑓 ∈ Z;
Correct 𝜌 using 𝑓 and the sign of 𝛼;
return 𝑅← ∘ (𝜌) correctly rounded into the output format ;

end
Algorithm 7: Correctly Rounded Mixed-Radix FMA Algorithm

In the following section, we will describe further the mechanisms of the mixed-radix FMA
algorithm. We will first describe the far-path and near-path addition/subtraction algorithms
of the fast computation, and then explain how the rounding test and recovery phase work.

Multiplication and Ratio Test

The first operation performed by the FMA is pretty simple: the multiplication can be
computed exactly in the mixed-radix unified format. According the definition of the mixed-
radix unified format of the input operands 𝑎 and 𝑏 given in equation (3.29), we can compute
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the result of the multiplication such that

𝜓 = 𝑎× 𝑏 = 2𝐿 · 5𝑀 · 𝑠; with 2109 6 |𝑠| < 2110; 𝑠 ∈ Z
− 2261 6 𝐿 6 1938; −842 6𝑀 6 770; 𝐿,𝑀 ∈ Z.

(3.30)

We then want to perform the addition/subtraction between 𝜓 and 𝑐, the third input
operand of the FMA that is represented in the format given in equation (3.29). Typically,
for floating-point addition, two cases can be distinguished: the case when the two input
operands are sufficiently close in terms of exponent that their aligned significands will lead
to cancellation when subtracted such that the result’s order of magnitude is essentially the
one of the bigger of the operands.

We can distinguish those two cases by performing a test on 𝜓 and 𝑐. If the ratio 𝜓
𝑐 is clearly

outside of [12 ; 2], the comparison returns a positive answer, and a negative result otherwise.
This means that there might be inputs with a ratio outside of [12 ; 2] for which the operation
returns a negative answer but the operation ensures that when it returns a positive result
value, the ratio is surely outside of [12 ; 2].

Given the definitions of 𝜓 and 𝑐 given in equations (3.29) and (3.30), we want to ensure
that either we have

2𝐿−𝑁𝑐 · 5𝑀−𝑃𝑐 · 𝑠
𝑡𝑐
<

1

2
or 2𝐿−𝑁𝑐 · 5𝑀−𝑃𝑐 · 𝑠

𝑡𝑐
> 2.

Therefore, ensuring that the ratio 𝜓
𝑐 is clearly outside of [12 ; 2] is equivalent to computing the

following inequations

(𝐿−𝑁𝑐) + ⌊(𝑀 − 𝑃𝑐) · log2(5)⌋+ 1 + 56 < −1

or (𝐿−𝑁𝑐) + ⌊(𝑀 − 𝑃𝑐) · log2(5)⌋+ 54 > 1
(3.31)

Given the precomputed value log2(5), ⌊𝐴 · log2(5)⌋ with 𝐴 ∈ Z in a small domain can be
computed correctly as

⌊𝐴 · ⌊log2(5) · 248⌋ · 2−48⌋
which does not overflow on a 64 bit signed integer variable [28]. Hence, we can easily
compute on a 64 bit signed integer the two values given in equation (3.32) and perform ratio
test that gives us two cases.

When no cancellation occurs (far-path)

Far-path algorithm When the ratio test states that the result is clearly outside of [12 ; 2], we
are sure that no cancellation can occur during the computation of the addition/subtraction.
Thus we can use a far-path addition algorithm.

To perform the addition/subtraction of 𝜓 and 𝑐 represented in the unified mixed-radix
format, we first want to perform a conversion to a 64 bits of precision binary format. This
means that we want to represent the significand 𝑣 stored on a 64 bit unsigned integer such
that 263 6 |𝑣| 6 264−1, and adapt the binary exponent 𝛾. This way we can compute the result
of the addition/subtraction in binary with correct rounding according to the current rounding
mode, while delaying the mixed-radix considerations for the few cases, when rounding to
the output format is hard.
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As the operands 𝜓 and 𝑐 do not have the same significand precision, we might first think
that we need two conversion algorithms from unified mixed-radix format to a 64 bits of
precision binary format. But it is easy to show that we can first represent them into a unified
mixed-radix format with the same precision, here 64 bits, such as

2𝜆 · 5𝜇 · 𝜔; with 263 6 |𝜔| 6 264 − 1; 𝜔 ∈ Z
− 2215 6 𝜆 6 1284; −842 6 𝜇 6 770; 𝜆, 𝜇 ∈ Z.

(3.32)

We can then apply a unique conversion algorithm from this mixed-radix format to a binary
variable 𝑇 represented with a 64 bit unsigned integer significand compliant to the definition:

𝑇 = 2𝛾 · 𝑣; with 263 6 |𝑣| 6 264 − 1; 𝑣 ∈ Z
− 4171 6 𝛾 6 3772; 𝛾 ∈ Z.

(3.33)

Applying this conversion algorithm on 𝜓 and 𝑐 gives us the two variables 𝑇1 = 2𝛾1 ·𝑣1 and
𝑇2 = 2𝛾2 · 𝑣2 defined like in equation (3.33) as inputs for the far-path addition/subtraction
algorithm, defined with Algorithm 8.

Input: 𝑇1 = 2𝛾1 · 𝑣1 and 𝑇2 = 2𝛾2 · 𝑣2
Output: 𝜙 = 2𝐶 · 𝑔 = (𝑇1 ± 𝑇2)(1 + 𝜀𝜙𝐹𝑃 )
Order 𝑇1 and 𝑇2 such that 𝛾′1 > 𝛾

′
2;

if 𝛾′1 > 𝛾
′
2 + 64 then

𝑔 ← 𝑣′1;
𝐶 ← 𝛾′1;

else
𝑉1 ← 2𝛾

′
1−𝛾′2 · 𝑣′1;

𝑉2 ← 𝑣′2;
𝑉 ← 𝑉1 ± 𝑉2;
𝜎 ← lzc(𝑉 );
𝜋 ← 2𝜎 · 𝑉 ;
𝑔 ← ⌊2−64 · 𝜋⌋;
𝐶 ← 𝛾′2 + 64− 𝜎;

end
return 𝜙 = 2𝐶 · 𝑔;

Algorithm 8: Far-Path Addition/Subtraction Algorithm

The overall philosophy of this algorithm is that when neither of the operands are zero, we
can order 𝑇1 and 𝑇2 according to their exponents such that 𝛾′1 > 𝛾

′
2. Absorption occurs when

𝛾′1 > 𝛾
′
2 + 64, in that case the result of the far-path addition is 2𝛾

′
1 · 𝑣′1. Otherwise, to perform

the addition of the two 64 bit unsigned integer exponents 𝑣′1 and 𝑣′2, we pose the intermediate
128 bit unsigned integer variables 𝑉1 and 𝑉2 and align the exponents by shifting 𝑣′1 to the left
such that 𝑉1 = 2𝛾

′
1−𝛾′2 · 𝑣′1. After performing the addition or subtraction on a 128 bit unsigned

integer variable 𝑉 = 𝑉1 ± 𝑉2, the significand is normalized with the function lzc(𝑉 ) that
counts the number of leading zeros and rounded to a 64 bit unsigned integer variable 𝑔. The
exponent 𝐶 is set accordingly.

The result of the far path addition algorithm is then returned in the following binary
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format
2𝐶 · 𝑔; with 263 6 |𝑔| 6 264 − 1; 𝑔 ∈ Z
− 4174 6 𝐶 6 3836; 𝐶 ∈ Z.

(3.34)

Far-path error analysis We will analyze the global relative error made during the computa-
tion of the far-path addition subtraction algorithm, from the conversion of the inputs 𝜓 and 𝑐
until the acquisition of the result 𝜙 = 2𝐶 · 𝑔. We shall denote this global error 𝜀𝜙𝐹𝑃 .

The first operation producing an error occurs during the computation of the equa-
tion (3.32). In the case of 𝜓, as the precision decreased from 110 bits to 64 bits, this operation
results in an error 2𝜆𝜓 · 5𝜇𝜓 · 𝜔𝜓 = 2𝐿 · 5𝑀 · 𝑠 · (1 + 𝜀𝜓) and that error can be bounded by
|𝜀𝜓| 6 2−63.

Then, given an input conform with the format described in equation (3.32), we compute
the exponent 𝛾 and significand 𝑣 as:

𝛾 = 𝜆+ ⌊𝜇 · log2(5)⌋; 𝑣 = ⌊2−64 · 𝜔 · 𝜏0(𝜇)⌋ (3.35)

with the precomputed table 𝜏0(𝜇) = ⌊5𝜇 · 2−⌊𝜇·log2(5)⌋+63⌋, represented by a table of 64 bit
unsigned integers. The relative error arising during the computation of the table can be
bounded such that |𝜀𝜏0(𝜇)| 6 2−63.

The global relative error attached to the computation of the 64 bit precision binary vari-
ables 𝑇1 and 𝑇2 is in the worst case 2𝛾 · 𝑣 = 2𝜆 · 5𝜇 · 𝜔 · (1 + 𝜀𝑣) · (1 + 𝜀𝜏0(𝜇)).

The rounding relative error of 𝑣 is a combination of the truncation error and the error
attached to the computation of the table 𝜏0(𝜇) such that 𝜀𝑣 can be bounded by |𝜀𝑣| 6 2−62.

The global relative error for this part of the mixed-radix FMA algorithm includes the
conversion error 𝜀𝜓, the error on the precomputed table 𝜀𝜏0(𝜇) and the rounding error 𝜀𝑣. With
these three errors combined, we deduce that a pessimist bound for this global relative error is
|𝜀𝑇𝐹𝑃 | 6 2−60.5.

Given 𝑇1 and 𝑇2 the inputs of the far-path addition algorithm, we want to bound the
relative error 𝜀𝜙𝐹𝑃 such that

𝜙 = (𝑇1 ± 𝑇2)(1 + 𝜀𝜙𝐹𝑃 ). (3.36)

The algorithm can compute the result in two different ways, firstly if 𝛾′1 > 𝛾′2 + 64, the
result is 𝜙 = 2𝛾

′
1 · 𝑣′1 · (1 + 𝜀𝜙𝐹𝑃 ) with |𝜀𝜙𝐹𝑃 | 6 2−63.

Secondly, if we are in the case where 𝛾′1 < 𝛾′2 + 64, hence 𝛾′2 6 𝛾′1 6 𝛾′2 + 63 because
𝛾′1, 𝛾

′
2 ∈ Z, we can deduce the bounds on 𝑉1 and 𝑉2 defined in the algorithm 8 such that

263 6 𝑉1 < 2127 and 263 6 𝑉2 < 264.
We want to compute bounds on 𝑉 = 𝑉1 ± 𝑉2. We have two cases: either it is an addition

and we have
264 6 𝑉1 + 𝑉2 < 2127 + 264 < 2128,

or it is a subtraction, with a reduction to absurdity we can show that

261 6
1

2
· (1− 2−59.49) · 263 6 𝑉1 + 𝑉2 < 2127 + 264 < 2128,

with the fact that

1− 2−59.49 6
1 + 𝜀𝑇1𝐹𝑃
1 + 𝜀𝑇2𝐹𝑃

6 1 + 2−59.49.
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Following the steps of the algorithm, we then bound 𝜎 according to its definition such
that 0 6 𝜎 6 66; thus 𝜋 is between 2127 6 𝜋 6 2128 and finally we have

𝑔 = ⌊2−64 · 𝜋⌋ = 2−64 · 𝜋 · 𝜀𝜙𝐹𝑃

In the end we have |𝜀𝜙𝐹𝑃 | 6 2−63.

When cancellation does occur (near-path)

When the ratio test states that the result may be inside of [12 ; 2], cancellation may occur
during the computation of the subtraction, we want thus to use the near-path subtraction
algorithm.

A solution to compute this near-path algorithm is to use the same method as the far-path
algorithm and perform the subtraction on binary operands. To do so, we need to determine
the number of bits we need for the binary precision operands to compute the near-path
subtraction in the worst case of cancellation and avoid loosing all accuracy.

Worst case of cancellation The worst case occurs when, without being zero, the subtraction
between 𝜓 and 𝑐 such that 2𝐿 · 5𝑀 · 𝑠− 2𝑁𝑐 · 5𝑃𝑐 · 𝑡𝑐 is relatively small. This is equivalent to
the following equation:

2𝐿 · 5𝑀 · 𝑠 ≈ 2𝑁𝑐 · 5𝑃𝑐 · 𝑡
𝑠

𝑡
≈ 2𝑁𝑐−𝐿 · 5𝑃𝑐−𝑀

(3.37)

with 254 6 |𝑡| < 255 and 2109 6 |𝑠| < 2110.
Let us define 𝑋 and 𝑌 such that 𝑋 = 𝑁𝑐 − 𝐿 and 𝑌 = 𝑃𝑐 −𝑀 ; 𝑋,𝑌 ∈ Z. With this

definition and the bounds of 𝑀 , 𝐿, 𝑃𝑐 and 𝑁𝑐 given in equations (3.29) and (3.30), we can
easily determine the bounds of 𝑋 and 𝑌 .

Lemma 1. For all 𝑋,𝑌 ∈ Z with −3068 6 𝑋 6 3230 and −1191 6 𝑌 6 1227, for 𝑠, 𝑡 ∈ Z with
with 254 6 |𝑡| < 255 and 2109 6 |𝑠| < 2110

⃒⃒
⃒𝑠
𝑡
− 2𝑋 · 5𝑌

⃒⃒
⃒ > 𝜂 = 2−177.61.

Proof. A proof and implementation of this method to compute the worst case of cancellation
can be found in [28].

Near-path algorithm Subsequently, we deduce that to compute the near-path subtraction
with at least 60 bits of precision, we need to represent the binary significands with at least
177 + 60 = 227 bits of precision. This means that we can represent the significands of the
operands of the near-path subtraction on a 256 bit unsigned integer, i.e. four 64 bits unsigned
integers machine words.

Hence we first compute the conversion from the mixed-radix unified format variables 𝑝ℎ𝑖
and 𝑐 to 256 bit precision variables, which we perform the near path subtraction with.

As for the far-path algorithm, we want to perform only one conversion to the binary
internal format, therefore adapt the significand and exponent of 𝑐 to be conform with the
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definition of 𝜓 in equation (3.30). We can then perform the conversion to the 256 bit precision
binary variable 𝑇 such that

𝑇 = 2Γ · 𝑤; with 2255 6 |𝑤| 6 2256 − 1; 𝑤 ∈ Z
− 4364 6 Γ 6 3578; Γ ∈ Z.

(3.38)

The near-path subtraction algorithm is quite similar to the far-path except that the align-
ment of the significands produce an error. We first order the two operands 𝑇1 = 2Γ1 · 𝑤1 and
𝑇2 = 2Γ2 · 𝑤2 such that Γ1 > Γ2. With the result 𝑇 ′

1 and 𝑇 ′
2, we align the significands such that

𝑧2 = ⌊2Γ′
2−Γ′

1 · 𝑤′
2⌋; 𝑧1 = 𝑤′

1 (3.39)

After ordering 𝑧1 and 𝑧2 such that 𝑧′1 > 𝑧′2, we can compute the subtraction 𝑑 = 𝑧′1−𝑧′2, perform
the count of leading zeros in 𝑑 with lzc(𝑑) such that we can normalize the significand and
exponent of the result as

𝑔 = ⌊𝑑 · 2𝑙 · 2−192⌋; and 𝐶 = Γ′
1 − 𝑙 + 192. (3.40)

The result of the near-path subtraction is then returned in the form as the result of the
far-path addition defined in equation (3.34), except for the bounds of the exponent that are
the following −2296 6 𝐶 6 3773.

Near-path error analysis The first error that occurs during the computation of the near-path
algorithm comes from the conversion from the mixed-radix unified format to the 256 bit
precision binary format. We can denote this error 𝜀𝑇𝑁𝑃 and define it such that

2Γ · 𝑤 = 2𝐿 · 5𝑀 · 𝑠 · (1 + 𝜀𝑇𝑁𝑃 ) (3.41)

computed in the following way

Γ = 𝐿− 18 + ⌊𝑀 · log2(5)⌋+ 𝜎 with 0 6 𝜎 6 1; 𝜎 ∈ N
and 𝑤 = ⌊2−129 · 𝜏0−3(𝑀) · 𝑠 · 218⌋ · 2𝜎.

(3.42)

The table 𝜏0−3(𝑀) is the 256 bit precision version of the table 𝜏0(𝜇) used before such that
we can show that we have 𝜏0(𝑀) = ⌊2−192 · ⌊2255−⌊𝑀 ·log2(5)⌋ · 5𝑀⌋⌋ = ⌊2−192 · 𝜏0−3(𝑀)⌋.

We can then bound the relative error induced by the computation of the table such that
|𝜀𝜏0−3 | 6 2−255, and the global relative error of the conversion algorithm such as |𝜀𝑇𝑁𝑃 )| 6
2−251.

The result 𝜙 of the near-path binary subtraction is subject to an error such that 𝜙 =
(𝑇1−𝑇2)(1+𝜀𝜙𝑁𝑃 ). A first error appears during the computation of 𝑧2 = (2Γ

′
2−Γ′

1 ·𝑤′
2)·(1+𝜀𝑧2),

by noticing that −2 6 Γ′
2 − Γ′

1 6 0 we can bound 𝜀𝑧2 such that |𝜀𝑧2 | 6 2−253.
This implies that 𝑔 = (𝑑 · 2𝑙 · 2−192) · (1 + 𝜀𝜙𝑁𝑃 ) with 2255 6 𝑑 · 2𝑙 6 2256− 1 and in the end

we have that |𝜀𝜙𝑁𝑃 | 6 2−63.

Rounding Test and Recovery Phase

Conversion to the output format Once the multiplication and addition or subtraction are
performed, we are left with a 64 bit variable of binary precision with an exponent bounded
such that 2𝐶 ·𝑔 with 263 6 |𝑔| 6 264−1 and−4174 6 𝐶 6 3836. If we want a binary output for
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the FMA operation, we can directly perform the rounding test that informs us if the result can
be correctly rounded into a binary64 floating-point number. If we want a decimal64 output,
we have to perform a conversion from this 64 bit precision binary number to a decimal such
that

10𝐻 · 2−10 · 𝑞 with − 1253 6 𝐻 6 1159; 𝑞,𝐻 ∈ Z
1015 · 210 6 𝑞 6 (1016 − 1) · 210 < 264 − 1.

(3.43)

This algorithm computes the exponent 𝐻 = ⌊(𝐶 + 63) · log10(2) − 15 + 𝜇(𝐶, 𝑔) where
𝜇(𝐶, 𝑔) ∈ N; 𝜇(𝐶, 𝑔) = ⌊𝐶 · log10(2) + log10(𝑔)− ⌊(𝐶 + 63) · log10(2)⌋⌋. We can show that 0 6
𝜇(𝐶, 𝑔) 6 1, implying that 𝜇(𝐶, 𝑔) ∈ 0, 1. This proof is based on the observation that 𝜇(𝐶, 𝑔)
is an increasing function in 𝑔. Thus for a given 𝐶, there exists 𝑔*(𝐶) ∈ Z; 263 6 𝑔*(𝐶) < 264

such that

𝜇(𝐶, 𝑔) =

{︃
0 if 𝑔 6 𝑔*(𝐶)

1 if 𝑔 > 𝑔*(𝐶)
(3.44)

We can precompute such a 𝑔*(𝐶) with a table of 64-bits unsigned integer words.
Once the exponent 𝐻 is set, we can compute the significand 𝑞 with a bounded precom-

puted table 𝑡(𝐻) = ⌊10−𝐻 ·2⌊𝐻·𝑙𝑜𝑔2(10)⌋+127⌋ and multiply it by 𝑔. The value is then normalized
and truncated properly to conform to the definition of the output of this operation described
in equation (3.43).

We skipped the detailed error analysis of this algorithm for the sake of conciseness but
the full pencil-and-paper proof will soon be available under the form of a research report. We
can bound the relative error of this conversion such that 10𝐻 · 2−10 · 𝑞 = (2𝐶 · 𝑔) · (1 + 𝜀𝜌𝐷)
with |𝜀𝜌𝐷 | 6 2−59.82.

Rounding test The goal of this test is to determine whether the output of the addition/-
subtraction algorithm can be rounded from the 64 bit precision in the output format to a a
binary64, resp. decimal64 with any sign and rounding mode.

In the binary64 case, we have as input 2𝐶 · 𝑔 = (𝜓 ± 𝑐)(1 + 𝜀*𝐵) with 𝜀*𝐵 the global error
combining all the previous errors such that |𝜀*𝐵| 6 2−58.74 and 263 6 |𝑔| 6 264 − 1. The
rounding test boils down to compute the “magic bound” 𝛽𝐵 = ⌊(264 · 𝜀*𝐵

1+𝜀*𝐵
⌋ and test if

|𝑔 − ⌊2−10 · 𝑔⌉210| > 𝛽𝐵. (3.45)

If this equation is not satisfied, then rounding to a 53-bit precision binary64 number is not
possible. Therefore, we compute 𝑓 the binary rounding boundary closest to 2𝐶 · 𝑔 such that
2𝑇𝐹 · 5𝐹5 · 𝑓 = 2𝐶 · 210 · 1/2 · 𝑓 and 254 6 𝑓 6 255 − 1 and step into the recovery phase.

In the decimal64 case, we have as input 2𝐻 ·2−10·𝑞 = (𝜓±𝑐)(1+𝜀*𝐷) with 𝜀*𝐷 the global error
combining all the previous errors such that |𝜀*𝐷| 6 2−58.18 and 1015 · 210 6 |𝑞| 6 (1016− 1) · 210.
The rounding test boils down to compute the “magic bound” 𝛽𝐷 = ⌊((1016 − 1) · 210 · 𝜀*𝐷

1+𝜀*𝐷
⌋

and test if
|𝑞 − ⌊2−9 · 𝑞⌉29| > 𝛽𝐷. (3.46)

If this equation is not satisfied, then rounding to a 16-digit precision decimal64 number is
not possible. Therefore we compute 𝑓 the binary rounding boundary closest to 2𝐻 · 𝑞 such
that 2𝑇𝐹 · 5𝐹5 · 𝑓 = 10𝐻 · 2−10 · 210 · 1/2 · 𝑓 and 2 · 1015 6 𝑓 6 2 · (1016 − 1) and step into the
recovery phase.
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Recovery phase If the rounding test fails, that means that the result we are trying to round
is too close to the rounding border 𝑓 to be able to decide to which nearest floating-point
number the result must be rounded. As we have computed the value of this floating-point
rounding border in the previous step, the recovery phase boils down to computing the sign of

𝛼′ =(−1)𝑠𝑎 · 2𝐿−𝑍𝑚𝑖𝑛 · 5𝑀−𝐹𝑚𝑖𝑛 · 𝑠+ (−1)𝑠𝑏 · 2𝑁𝑐−𝑍𝑚𝑖𝑛

· 5𝑃𝑐−𝐹𝑚𝑖𝑛 · 𝑡𝑐 − 2𝐹2−𝑍𝑚𝑖𝑛 · 5𝐹5−𝐹𝑚𝑖𝑛 · 𝑓
(3.47)

with guarantees on the exponents such that 0 6 𝐹2−𝑍𝑚𝑖𝑛 6 2162; 0 6 𝐹5−𝐹𝑚𝑖𝑛 6 786; 0 6
𝐿− 𝑍𝑚𝑖𝑛 6 2282; 0 6𝑀 − 𝐹𝑚𝑖𝑛 6 785; 0 6 𝑁𝑐 − 𝑍𝑚𝑖𝑛 6 2342; 0 6 𝑃𝑐 − 𝐹𝑚𝑖𝑛 6 786.

Given those bounds, we know that we need to compute positive or zero integer powers
of 5, i.e. 5𝑘, with 0 6 𝑘 6 786. Furthermore, we know that every 5𝑘 with 0 6 𝑘 6 786 holds
on ⌈log2(5

786)⌉ = 1826 bits, hence 29 words of 64 bits.
Finally, each of the terms 𝛼 holds on respectively on 4218, 4223 and 4043 bits, so whatever

their sign is, they hold on a maximum of 4225 bits. Thus, in order to compute 𝛼 exactly and
determine its sign, we need 67 words of 64 bits, leaving 63 “free” bits.

We then have three cases: if 𝛼 = 0 then the result is exactly the rounding border 𝑓 , and
will be rounded in the output format correctly by our final rounding algorithm, according to
the current rounding mode. If 𝛼 < 0, then the result is below the rounding border 𝑓 and will
round to the lower nearest floating-point number in the output format. By analogy, if 𝛼 > 0,
then the result shall round to the higher nearest floating-point number in the output format.

Computing this recovery phase is therefore very costly, but, fortunately, this part of the
FMA algorithm will only be computed sparsely.

Final rounding to the output format Final rounding to the supported output formats,
binary64 and decimal64, takes either (−1)𝑠 · 2𝐶 · 𝑔, 263 6 𝑔 < 264, or (−1)𝑠 · 10𝐻 · 2−10 · 𝑞,
1015 · 210 6 𝑔 < 1016 · 210, in input and rounds them to a binary64 or decimal64 floating-point
number respectively. This rounding is performed in the current rounding mode set in the
IEEE754 environment the code is run in. Binary rounding is done in the IEEE754 rounding
mode for binary floating-point arithmetic, decimal rounding in the decimal mode. This final
rounding also sets the inexact, underflow or overflow flags, when the rounding is respectively
inexact, underflowed (tiny and inexact) or overflowed.

The difficulty in implementing this final operation is two-fold: first, the rounding must
address all special cases, such as subnormal rounding, normal rounding, overflow, decimal
denormalization at the least exponent etc. Second, the rounding must be performed with
the appropriate rounding mode, access to which is difficult. It also must set the flags. We
overcome both challenges by exactly computing binary64 resp. decimal64 numbers that,
provided to a binary64 resp. decimal64 IEEE754 floating-point operation, round to the same
value as the input data.

For binary64 rounding, we decompose (−1)𝑠 · 2𝐶 · 𝑔 into a normal binary64 value 2𝐴,
another normal binary64 value 2𝐵 · 𝑟 and a normal or subnormal value 2𝐶

′ · 𝑔′ such that
a binary64 FMA computes 2𝐴 × 2𝐵 · 𝑟 + 2𝐶

′ · 𝑔′ and rounds to the same binary64 value as
(−1)𝑠 · 2𝐶 · 𝑔. Typically 𝐶 ′ = 𝐶 + 11, 𝑔′ =

⌊︀
𝑔 · 2−11

⌋︀
, 𝐴+𝐵 = 𝐶, 𝑟 = 𝑔 − 211 · 𝑔′.

For decimal64 rounding, we represent (−1)𝑠 ·10𝐻 ·2−10 ·𝑞 exactly as an IEEE754 decimal128
floating-point value and perform an IEEE754 decimal128 to decimal64 format conversion,
which rounds correctly and sets the flags 23. This way of performing final decimal rounding

23. see note below in Section 3.4.4
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is known to be sub-optimal in terms of performance but has the advantage of being easy
to implement. We consider changing this part of our algorithm and perform decimal64
rounding manually, while detecting the appropriate rounding mode by executing the avatar
decimal64 instruction 𝑡 = (−1)𝑠 ·

(︀
1015 + 1

)︀
resp. 𝑡′ = (−1)𝑠 ·

(︀
1015 + 2

)︀
added to 𝛿, with

𝛿 ∈ {−3/4,−1/2,−1/4, 0, 1/4, 1/2, 3/4}, choosing 𝑡, 𝑡′ as well as 𝛿 depending on the parity of
a truncated significand and the value of the rest that got truncated off.

3.4.4 Mixed-Radix FMA: Implementation and Test Results

Reference implementations

In order to perform software testing on our mixed-radix FMA implementation, we de-
signed two other implementations of a mixed-radix FMA:

— one based on the GNU Multiple Precision Library (GMP) [102], with the same C calling
interface as our optimized FMA implementation, and

— one written in Sollya [41], with an ad-hoc text-based interface.

While designing these two reference implementations, we set the following design goals:
the GMP-based implementation should be as close as possible to what someone requiring
a mixed-radix FMA would design in a limited timeframe, reusing existing software library.
This implementation should be reasonably fast, but easy to design.

We addressed this design goal by converting all input operands, be they IEEE754 binary64
or decimal64 numbers, into GMP rational numbers, i.e. fractions of (long) integers. We then
performed the multiplication and addition steps of the FMA in GMP rational numbers. GMP
can perform these operations on rational numbers without any error, computing exact long
products, sums and gcds as required, while allocating memory dynamically. Our reference
implementation then rounds the rational number, call it 𝑝𝑞 , by first determining the output
exponent for a binary64 resp. decimal64 number, call it 𝐸, and then “rounding” the rational
number 𝑟

𝑠 = 2−𝐸 · 𝑝𝑞 (resp. 𝑟𝑠 = 10−𝐸 · 𝑝𝑞 ) to an integer significand by long division of the long
integer 𝑟 by 𝑠, adapting the division rest’s sign as required by the rounding mode. As the
exponents of the input and output may grow relatively large, GMP is required to manipulate
integers of size of about a couple of thousand bits in the worst case.

In the next Section 3.4.4, we give an overview of the testing of our optimized FMA imple-
mentation we performed, comparing its results to the GMP-based reference implementation,
and also compare timing results.

While performing software development and intermediate testing of both our optimized
implementation and the GMP-based one, we found certain input operands where the two
implementations did not agree. In order to have a way to decide where to look out for issues,
we designed yet another implementation of a mixed-radix FMA, in the interpreted numerical
language Sollya [41]. In this tool, numerical expressions can be written as exact expressions,
and evaluated to any precision without being hurt by spurious roundings. It is relatively easy
to give definitions of the output exponent and significand of a mixed-radix FMA in terms
of the input exponents and integer significands. Particularities due to subnormal rounding,
underflow and overflow can be addressed through minimum and maximum computations.

We used our Sollya reference implementations to generate “gold” result test vectors,
with which we then verified both our optimized FMA implementation and the GMP-based
reference. After our software testing campaign, all our three implementations agreed.
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While we spent quite some time on testing the implementation of our mixed-radix FMA
algorithm against reference implementations, we would like to insist that we consider our
algorithm to be correct only because we were able to prove its correctness. The detailed
pencil-and-paper proof is too long to be included inhere but will be made available under the
form of a research report soon.

Test and Timing Results

We tested our mixed-radix FMA implementation in all its 14 different operand-result-
format variants on a system based on an Intel i7-7500U quad-core processor, clocked at
maximally 2.7GHz, running Debian/GNU Linux 4.9.0-5 in x86-64 mode. We compiled our
code using gcc version 6.3.0 with optimization level 3 and setting the -march=native flag.
On our system, this results in AVX instructions being used, including hardware binary64
FMA. The IEEE754-2008 decimal types and instructions come from our gcc’s libgcc. The
GMP-based reference implementation was based on GMP version 6.1.2. Sollya was at git
commit 12bf2006c.

We tested each of the 14 variants on an appropriate test vector file containing at least
115000 test points, covering all possible cases of signs, signed zeros, infinities, NaNs, sub-
normal and normal numbers, as well as all possible binary and decimal rounding modes 24.
We found all our 14 mixed-radix FMA implementations to be correct with respect to their
numerical outputs for all the outlined cases.

We also performed testing of the implementations concerning the correct setting of the
IEEE754-2008 flags, as they are inexact, overflow, underflow, divide-by-zero and invalid [117].
We found all flags to be set correctly, i.e. our implementations correctly raised the appropriate
IEEE754-2008 when the operation actually was inexact (i.e. implied rounding), overflowed,
underflowed or was invalid (as for multiplication of zero by infinity). The implementation also
was checked for correctly leaving the flag unchanged if it did not encounter the appropriate
IEEE754-defined condition to raise the flag. One issue was found concerning this last check
for the mixed-radix FMA implementations that return decimal results: for certain exact cases,
the inexact flag was raised spuriously. We traced this undue raising of the inexact flag back
to the implementation of the IEEE754 decimal128 to decimal64 format conversion that is
contained in our version of libgcc. A bug has been filed against libgcc.

Concerning performance testing, we ran our 14 implementations on each of the entries
of our result test vectors, timing the function call time in terms of machine cycles using
the Intel RDTSC instruction after serialization with cpuid. We subtracted the measured
time for calling an empty function with the same function prototype. We ran the timing
measurements repeatedly and with preheated caches, in order to smooth out effects of modern
superscalar processors. We made sure that the test vectors contained a representative, random
subset of floating-point numbers, i.e. we made sure that special cases, such as addition and
multiplication of zeros, NaNs etc. were represented but not over-represented.

We present our timing measurements under the form of histograms which relate a certain
cycle count interval to the number of times this cycle count interval was encountered. We did
the same performance testing which we run on our optimized FMA implementation on our
GMP-based mixed-radix FMA implementation, too.

24. and rounding mode combinations, as IEEE754-2008 specifies separate current rounding modes for the
binary and decimal operations’ subsets [117]
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Figure 3.2 – Histogram of timing measurements for our implementation

For the sake of succinctness, we report only the performance testing results of one FMA
function, called DBBB. This function takes all its arguments as IEEE754 binary64 numbers
and returns a decimal64 number.

Figures 3.2 give the cycle count histograms for our DBBB FMA functions. It is easy to
see that our implementations handle most cases in less than 50 cycles. Our implementations
present a maximum call time of about 375 cycles. These call times correspond to cases when
the rounding recovery phase gets used. As our algorithm is statically bounded in terms of
memory consumption and makes no dynamic memory allocation, these maximum timing
counts are hard bounds.

Figures 3.3 give the cycle counts for the GMP-based implementation for DBBB. For most
cases, the GMP-based implementations is about 10 times slower than the implementation
based on our algorithm presented in this section. The GMP-based maximum call times reach
up to 46000 cycles in very rare cases, which is about 100 times slower than ours. This is due
to the cost incurred by GMP’s dynamical memory allocation mechanism.

3.4.5 Conclusion

In this Section, we have analyzed the feasibility of general computational mixed-radix
operation. We have presented an algorithm to compute a correctly-rounded IEEE754 binary64
or decimal64 result to a mixed-radix Fused-Multiply-and-Add operation, taking any com-
bination of IEEE754 binary64 and decimal64 numbers in argument. Our algorithm trivially
allows for covering correctly rounded mixed-radix addition, subtraction and multiplication
and is designed in a way that allows mixed-radix division and square root to be computed
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Figure 3.3 – Histogram of timing measurements for a reference implementation

with that FMA, too.
Our algorithm is based on a mixture of exact significand multiplication, finely precision-

tuned radix conversion, binary addition and an exact rounding recovery phase that is
launched, if rounding of an approximation would not allow a correctly rounded result
to be computed. The recovery phase is based on the observation that all IEEE754 binary64
and decimal64 floating-point numbers and floating-point number mid-points are integer
multiples of a fixed 2𝑄 · 5𝑊 , with constant 𝑄,𝑊 ∈ Z, 𝑄,𝑊 6 0.

Our implementation can handle most input cases in about 50 machine cycles, which
is a reasonable performance timing for a software-implemented floating-point operation.
When the recovery phase gets used, latency stays below 400 cycles. This bound is hard; our
implementation does not require any dynamic memory allocation. It is hence suitable for
integration into environments where dynamic memory management is not available.

Our implementation has been thoroughly tested against two other reference implemen-
tations, which we developed. Besides an issue with an undue IEEE754 inexact flag setting,
which is outside our control, the test returns a correct verdict. A detailed pencil-and-paper
proof for our algorithm has been written and will be made available under the form of a
research report.

While we are convinced that our implementation is one of the first steps to paving the
road to generalized mixed-radix floating-point arithmetic in IEEE754, quite a few points need
to be addressed by future work:

— We subsumed all 14 possible mixed-radix binary and decimal input/output format
combinations for the FMA under one single core algorithm. It eased development and
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the correctness proof; it induces certain overhead due to exponent range over-estimation,
though. Future work might perform a more detailed one-by-one analysis.

— We showcased our mixed-radix FMA for the IEEE754 formats binary64 and decimal64
only. All possible combinations taking into account also the binary32 and decimal128
formats need to be covered by future development.

— The necessity to fall back to exact arithmetic with large integer-based accumulators for
hard-to-round cases is not very satisfactory. Future work should try to address the issue
of precomputing worst-case precision bounds for mixed-radix FMA again.

3.5 Extended Precision Floating-Point Arithmetic

Extending IEEE754-2008 Standard with additional arithmetical functionality is not limited
to providing operations that mix existing formats and radices of the Standard, as we did
in the two Sections 3.3 and 3.4 that precede. We can also look into making floating-point
arithmetic more precise, for example, to ease the development of precision-sensitive codes. In
this Section, we are going to describe our approaches with respect to this aspect. The Section
is based on [156].

3.5.1 Introduction

The IEEE754 Standard for Floating-Point (FP) Arithmetic defines several binary and
decimal FP formats [117]. The basic ones, such as binary32 (single precision) and binary64
(double precision), are natively supported in hardware by current general-purpose processors.
The IEEE754 binary128 (quad precision) format is supported in the current FP environment
mainly through software emulation. The additional extended formats defined by IEEE754,
with precisions beyond quad-precision, have no practical realization [117].

While binary32 and binary64 gear the majority of numerical software, some applications
need support for precisions beyond quad-precision, i.e. with more than 113 bits of significand
length. Examples for such applications include astronomy [79, 152, 153], computational
physics [259] or experimental mathematics [11]. In some cases the use of extended precision
might be overcome by subtle FP accuracy analysis and FP tricks [17, 97]. The use of floating-
point expansions, based on errorfree transformations [97, 138, 247, 248], is also a possibility. In
this approach, higher precision is obtained by representing accurate quantities by unevaluated
sums of floating-point numbers [97, 110, 131, 138, 164, 165, 182, 236, 247, 248]. As floating-point
units are well optimized on current hardware, this approach may provide a good middle
ground before using higher precision formats. Unfortuately, the use of expansion techniques
often does not work “out of the box”. For this reason, some developers may simply prefer to
speed up development with extended precision formats, used in some compute kernels, even
if this means breaking a butterfly on a wheel [242].

As we will discuss in more detail below, such applications typically resort to arbitrary
precision FP libraries, such as MPFR 25 or MPFUN 26. These libraries are properly designed
and optimized: they offer very good, if not optimal, performance in the precision range where
arbitrary precision overhead becomes negligible [93]. This range typically starts at precisions

25. http://www.mpfr.org/
26. http://www.davidhbailey.com/dhbsoftware/

http://www.mpfr.org/
http://www.davidhbailey.com/dhbsoftware/
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beyond a couple of hundreds to a thousand bits. This leaves a gap in the mid-precision range
between quad-precision and a couple of hundred bits.

In this section, we propose the libwidefloat software designed to fill this gap. The
package offers FP types with precisions between 64 and 512 bits, to be chosen at application
compile time in 32 bit steps. Our FP types come with a 32 bit wide exponent, which essentially
eliminates the need for support of subnormal numbers. They come with support for IEEE754-
like infinities, Not-A-Numbers, rounding modes and FP flags [117]. The latter two features
can be deactivated (resp. set to default round-to-nearest mode) at application compile time to
allow for enhanced performance.

This Section is further organized as follows: in Section 4.4.1, we first present existing
solutions to extended FP precision, analyzing the causes of their shortcomings in the mid-
precision range. We then give an overview of modern compiler techniques that we will
leverage to overcome these shortcomings (Section 3.5.3). In Section 3.5.4, we present our
libwidefloat library, detailing the data-types and operations it supports. We briefly
describe the algorithms used in the library in Section 3.5.5, give experimental results in
Section 4.4.1, discuss future extension potential using C++ in Section 3.5.7 and conclude on
wide-mantissa floating-point with Section 4.2.5.

3.5.2 Shortcomings of Existing Multiprecision Libraries

We have claimed that the existing arbitrary precision libraries, such as MPFR, are very
well optimized for higher precisions (starting at about 1000 bits) but hindered by considerable
overhead in the low- and mid-precision range. This overhead is due to several factors.

First, the very nature of arbitrary precision means that the length of the limb arrays that
hold the FP significands of the different formats is not statically known. As a consequence,
all variables having a type defined by one of these arbitrary precision libraries need not
only be declared but also be initialized, using a call to a certain initialization function [86].
This function actually attributes a precision setting to the arbitrary precision variable and
calls a memory allocation function such as malloc to provide space for the FP variable’s
significand. All accesses to a program’s arbitrary precision variables’ significands are in
consequence indirect, requiring pointers to be followed onto the stack. Together with the
dynamic nature of the significand length, this mostly prevents compilers from performing
any reasonable optimization involving the arbitrary precision FP significands. In addition, for
certain applications the requirement to allocate the arbitrary precision data on the memory
heap and not hold them on the stack induces important overhead, as memory allocation may
have significant cost with respect to computations for smaller precisions.

Second, the fact that existing arbitrary precision software comes packaged as software
libraries adds to their overhead. While operations on IEEE754 binary32 and binary64 data-
types are “inlined” as basic operations into the code, each and every use of an arbitrary
precision operation involves a function call with all its cost in terms of register usage, variable
spills, instruction cache misses etc. In addition, the correspondence between function names
and the code behind them gets lost to optimization. Typically, when calling the arbitrary
precision library, the compiler does not know of the functions’ use cases and, when compiling
the application code, it does not anything about the library functions but their name. Due
to the use of assembly in the underlying libraries such as GMP 27, the arbitrary precision

27. see https://gmplib.org/

https://gmplib.org/
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libraries even push this issue further to a point where the compiler can almost perform no
optimization, even when using Link-Time-Optimization [86, 95].

3.5.3 Leveraging Compiler Optimization Techniques

In order to take the observations described in the previous Section 4.4.1 into account, the
following requirements to a software package for mid-precision FP arithmetic seem sensible.

First, the piece of software should not be packaged as a library to be linked in but should
come in the form of code to be directly integrated into the application code. With modern
compilers, such as gcc, this can be achieved by condensing the mid-precision FP library into
header files that contain the functions provided by the software package declared static and
inline. This way, the compiler 28 will be able to inline the FP functions into the application,
propagating constants as far as possible, eliminating all unnecessary parts (such as NaN
handling where no NaNs are possible) and optimizing loops by unrolling them.

Second, the software package should not use any micro-optimizations resorting to inline
assembly or linking with objects written in assembly. While it is tempting for performance
optimization at a function level, the use of assembly prevents compilers from propagating the
information about the program it needs for optimization through the assembly sequence [95].
In most cases, modern compilers have sufficient support for doubled-precision integer arith-
metic, in particular full 64×64 bit multiplication, through builtins (such as the __uint128_t
type in gcc 29), so that resorting to assembly is no longer necessary.

Finally, all wide integer and FP data-types to be declared by a FP software package
optimized for the mid-precision range should be statically sized, in order to be held directly
on the stack. In addition, the data should be properly aligned in order to avoid cache misses.
As a matter of course, the endianess of wide integers, represented as limbs of a statically sized
array should match the system’s natural endianess, allowing the compiler to make use of
up-converting and down-converting memory move operations [120]. In order to help the
compiler, all accesses to these data-types involving pointers (or indexing in an array) should
be done in a manner that allows for optimization. For instance, functions taking references on
such data-types should be declared in a way that makes the compiler understand 30 that the
pointers are not aliased (using the restrict keyword) and constant (using const) [122,123].

As a matter of course, the last requirement of using statically sized types in a FP mid-
precision software package supporting more than one precision comes at the cost of a com-
binatorial explosion of functions to be provided. Indeed, if the ease of mixing FP types of
different precisions that is provided by arbitrary precision libraries is to be maintained, where
an arbitrary precision library provides one function for, say, addition, a software package
with statically sized types has to provide several functions, one per combination of input
and output types that is possible and sensible. In our work on libwidefloat, we have
made extensive use of macro-programming and code generation to overcome this issue of
combinatorial explosion.

28. see e.g. https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html
29. see e.g. https://gcc.gnu.org/onlinedocs/gcc/_005f_005fint128.html
30. see e.g. https://gcc.gnu.org/onlinedocs/gcc/Restricted-Pointers.html

https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html
https://gcc.gnu.org/onlinedocs/gcc/_005f_005fint128.html
https://gcc.gnu.org/onlinedocs/gcc/Restricted-Pointers.html
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3.5.4 The libwidefloat Library

The libwidefloat software was implemented with the shortcomings of the existing
arbitrary precision libraries and modern compiler technology in mind. The software is
implemented with two header files only, using modern C99/C11 [122, 123] but no assembly
in order not to break the compiler’s opportunities to optimize the code. All functions are
declared in a way that allows them to be inlined and then optimized in their use context by
the compiler.

The libwidefloat header starts by declaring statically sized data-types for libwidefloat
FP values with precisions between 32 and 512 bits, by 32 bit increments. All these types
support the basic IEEE754 FP data, such as positive and negative real numbers, signed zeros,
signed infinities and Not-A-Number (NaN) data. The significand length is adapted in size
according to the type’s precision; the exponent width is kept at 32 bits for all precisions. Since
this exponent width is pretty wide, we chose not to provide support for subnormal numbers
in the libwidefloat types. The NaNs are signed but do not provide support for payload.
They are all quiet NaNs; signaling NaNs are not supported.

Even though the libwidefloat types appear to be IEEE754-compliant from a program-
mer’s perspective, their encoding is an ad-hoc one and does not respect the provisions of the
IEEE754 Standard on extended precision types [117].

The libwidefloat software has provision for all five IEEE754 exception flags (inexact,
invalid, overflow, underflow and division-by-zero) as well as for all four IEEE754 rounding
modes (round-to-nearest-ties-to-even, round-down, round-up, round-towards-zero) [117].
The software can be configured at compile time in a way that allows this FP state, made of
the flags and the rounding-mode, to be either

— held in a global variable,

— passed as a handle to any of the libwidefloat functions or

— omitted, assuming round-to-nearest as the rounding-mode and setting no flags.

The code is written in a way such that the compiler is able to eliminate all unnecessary
computation steps that are not required when no flags are to be set and the rounding mode is
statically set to round-to-nearest.

Currently, libwidefloat includes 1303 functions covering the following types of opera-
tions:

— Conversion between all combination of libwidefloat types. The up-conversions are
exact, the down-conversions are correctly rounded.

— Conversion from and to the IEEE754 binary32 and binary64 formats [117]. These
conversions are correctly rounded and signal all required exceptions, in particular
inexact when rounding is necessary. These exceptions are signaled in and the rounding
mode is taken from the FP environment of the type the conversion goes to. For instance,
when converting from IEEE754 to libwidefloat, rounding is done according to the
libwidefloat rounding mode and not the IEEE754 one.

— Conversion from and to signed and unsigned integer types. These conversions are
provided in all variants (signaling inexact or not, taking the rounding mode from an
immediate or from the FP state) that are defined by the IEEE754 Standard.

— Rounding to integral as defined by the IEEE754 Standard [117].



102 Chapter 3. Software to Support an Enhanced Floating-Point Environment

— Signaling and quiet comparisons, returning the comparison result as a enumerated
type [117].

— Homogeneous-type absolute value and negation operations. The heterogeneous vari-
ants, where the operands’ type differs from the one of the result can be provided through
composition with a conversion operation [117].

— Operations to access the libwidefloat FP environment with respect to flags and
rounding modes.

— And finally, Addition, Subtraction, Multiplication, Division, Fused-Multiply-And-Add
(FMA) and Square Root with correct rounding. All these operations are provided in a
homogeneous variant, where all operands and the result have the same type and in
all heterogeneous variants, where the result is of a smaller type, such that all correctly
rounded heterogeneous operations required by IEEE754 can be provided through
composition with the conversion operations [117].

3.5.5 Algorithmic Choices in libwidefloat

There is no real novelty in the algorithms used in libwidefloat. In order to manage
the combinatorial explosion due to support for the 16 formats covering the precisions from 32
to 512 bits in homogeneous and heterogeneous operations, the final rounding step towards
any of the supported formats has been factored into final rounding functions. These final
rounding functions receive an intermediate result that has undergone already some rounding
with respect to the mathematically exact result.

We shall hence explain the techniques used for intermediate and final rounding first,
before detailing the algorithms behind multiplication, addition, FMA, division and square
root.

Let us just note that libwidefloat also contains conversion functions from and to
integer and the IEEE754 binary32 and binary64 formats. These conversions have been coded
in ad-hoc ways, which are not described inhere.

Intermediate and Final Rounding

In order to provide correct rounding ⋆(𝑦) = ⋆(𝑓(𝑥)) for a function 𝑓 , an intermediate
result ̃︀𝑦 must be computed in such a way that ⋆(̃︀𝑦) = ⋆(𝑦) [197]. For all operations supported
by libwidefloat, computing such an approximation ̃︀𝑦 is pretty easy: it is either possible
to compute the exactly representable result 𝑓(𝑥) (multiplication), or to compute a good ap-
proximation together with a flag indicating inexactness. Indeed, for division and square root,
the backward error can be exactly computed and compared to zero to yield the inexactness
predicate. For addition and FMA, it is just necessary to control the part of the significand that
gets discarded during the alignment shift.

However, when computing the approximation ̃︀𝑦 out of the exact result or a better approxi-
mation assorted with an inexact indication, pure truncation is not enough. Such a rounding
scheme would suffer from the so-called double-rounding issue [21, 197].

In order to overcome the double-rounding issue, libwidefloat uses rounding to odd for
the intermediate results ̃︀𝑦. This particular rounding mode is due to Boldo and Melquiond [21]
and can be though of as a intermediate rounding longer than final precision where the last
few additional bits represent the classical round, guard and sticky bits [77].
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Multiplication

As already stated, multiplication in libwidefloat is based on an exact multiplication of
the input significands, considered to be integer. At the current state of the library development,
naive schoolbook multiplication using 𝒪(𝑛2) machine multiplications is used. The partial
products are first represented in a carry-save format and then reduced [70].

The use of Karatsuba or Toom-Cook Multiplication [197] is left for future work but might
prove necessary.

Addition, Subtraction and Fused-Multiply-Add

When implemented in software, Floating-Point Addition and Subtraction reduce to the
same algorithm. The FMA operation can also share this part of code; the only difference is in
whether one of the arguments to addition comes directly from one of the operands or from an
intermediate exact product.

The core algorithm for addition and subtraction used in libwidefloat is a classical
one [77,197] and very simple: after reordering of the FP operands for exponent, the significand
of the lesser operand is shifted right for alignment, unless this shift would be larger than the
output precision. The aligned significands are then added resp. subtracted. A normalization
step then ensures correct construction of a FP significand in the case of elimination for
subtractions. In software, due to overhead in branching and code bloat, it is sensible to run
that normalization step in any case and not to distinguish between a near-path and a far-path.

Division and Square Root

The algorithms for division and square root are both based on an approximation to 1/
√
𝑧

in libwidefloat. We compute division 𝑥/𝑦 as 𝑥/(
√
𝑦)2 and square root

√
𝑥 as 𝑥× 1/

√
𝑥.

An approximation to 1/
√
𝑥 can easily be computed using the Newton-Raphson iteration

𝑦𝑛+1 = 𝑦𝑛 ·
1

2
·
(︀
3− 𝑥 · 𝑦2𝑛

)︀

seeded with a small table for 𝑦0 [197]. In libwidefloat we use a 6 bit approximation for 𝑦0.
In an extended-precision software environment, it is useful not to perform the Newton

iteration on software-simulated FP variables but purely on integer variables, using a fixed-
point representation. We use this approach in libwidefloat. However, we chose to
generate that code sequence instead of writing it manually in order not to have to determine
all alignment shifts in that fixed-code point by hand.

3.5.6 Experimental Results

Our current implementation of libwidefloat provides 1303 user-available functions.
We have tested it for performance against MPFR 3.1.2-p3 based on GMP 6.0.0. We used
gcc 4.9.2 on a 64bit Linux system featuring a 4 core Intel i7-5500U running at 2.4 GHz. The
optimization level was set to -O3.

There is no one-to-one relation between the functions provided by libwidefloat and
those provided by MPFR. We therefore do not give performance results per function. We
rather wrote two benchmark applications and compiled them against both libwidefloat
and MPFR. The first benchmark application consists of a LU-decomposition, triangular system
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Figure 3.4 – Experimental results: Linear Algebra

solving and residue computation. The second one uses secant’s method to approximate the
zero of a high-degree polynomial.

All benchmark codes were run in all precisions supported by libwidefloat and com-
pared to MPFR, which was run at the same precisions. While we focused on performance
testing, we also compared the actual numerical results of libwidefloat and MPFR. On all
benchmark codes and all precisions, the results were bitwise identical between both libraries,
as expected, given that both libraries provide correct rounding.

We ran our LU-decomposition, triangular system solving and residue benchmark for
matrix sizes 1000 × 1000. The matrices and respective right-hand sides were filled with
random IEEE754 binary64 values between −107 and 107. The time needed to allocate and
free the different vectors and matrices was included in the performance testing. Matrix
and vector-allocation for MPFR required calling the MPFR initialization procedures for each
element of the matrix resp. vector; libwidefloat was not burdened by this requirement.

The results of the LU-decomposition benchmark are given in Figure 3.4. They show that
libwidefloat performs well better than MPFR for small precisions but that starting with
precisions around 224 bits, the use of Karatsuba-multiplication helps in keeping MPFR’s
timings low, while libwidefloat exhibits quadratic behavior. We shall address this issue
in our library in future releases.

In our second benchmark, we used secant’s method to approximate a zero of a polynomial
of degree 150 up to the accuracy that was achievable within the given compute precision
(which we made vary for the test). The polynomial was input as an expression tree and
evaluated, using a recursive algorithm. This example is typical for numerical Computer
Algebra Systems, such as Sollya 31 or Sage 32.

As shown with Figure 3.5, for that second expression-evaluation benchmark, libwidefloat
typically performed better with respect to MPFR. However, our library is still hindered by
the use of a naive multiplication algorithm for precisions higher than 320 bits.

31. see http://sollya.gforge.inria.fr/
32. see http://www.sagemath.org/

http://sollya.gforge.inria.fr/
http://www.sagemath.org/
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Figure 3.5 – Experimental results: Expression Evaluation

3.5.7 Enhancing Usability with C++

As we have just seen, our libwidefloat library provides 1303 user-available functions
to provide support for 16 new formats covering the precisions from 32 to 512 bits in homoge-
neous and heterogeneous operations, along with support functions for conversion from and
to the IEEE754-2008 formats binary32 and binary64. This large number of functions gives a
wide variety of choice to the user but also makes their work of porting existing applications
to wider formats really hard.

In order to alleviate this issue with libwidefloat, we worked together with an un-
dergraduate student in order to come up with a C++ binding of libwidefloat. This C++
binding provides 16 classes for the different libwidefloat formats and defines methods
for the infix operators +, -, *, /, = in a way that actually binds libwidefloat’s operation
to these classes. The square root operation is provided as a sqrt method. All conversions
from the IEEE754-2008 formats are provided as constructors, overloaded cast operators and
as overloaded assignment operators. The conversions to IEEE754-2008 are implemented as
casts and assignment operators. Some conversions from and to integers are also available.

In order to dominate the combinatorial explosion of possible combinations, template
programming was first considered. The solution finally adopted is based on code generation
again, though.

This C++ binding allows existing code to be ported easily to higher precisions. Some
applications showcasing this ease in programming were developed by the student.

However, the C++ binding missed one of its initial goals: libwidefloat is written in
a way that should allow a compiler to inline most of its operations. Ways to maintain this
ability to be inlined exist for C++ libraries. The student’s time being limited, the current
design of the C++ binding breaks inlining support, which makes to calls to methods of the
classes provided by this software pretty expensive with respect to the actual work done by
the underlying libwidefloat operations. We shall continue working on improving this
aspect in future work.
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3.5.8 Conclusion

The libwidefloat software fills the gap between IEEE754 binary64 (or binary128 where
available) and arbitrary precision libraries, which involve a certain amount of overhead in
the mid-precision range. Our library leverages modern compilers’ optimization techniques,
such as constant propagation, code inlining and dead code elimination, to achieve this goal.

At the current state, libwidefloat supports all basic operations, like e.g. addition, FMA,
square root or comparisons. Development is ongoing: we are working on a C++ wrapper to
allow for an easy drop-in-replacement of the IEEE754 binary64 format by libwidefloat
formats. Further, we plan to use GNU’s printf/scanf extension techniques to allow for
easy input/output operations with libwidefloat. The development of the elementary
intrinsic functions like the exponential, the logarithm or the trigonometric operations is also
part of future work.

Experimentally, we see that libwidefloat’s performance still needs some improvement
in the range between 256 and 512 bits. The current implementation of the library lacks
sufficient performance due to the use of a naive (schoolbook) multiplication algorithm. We
shall extend the library to use the Karatsuba or Toom-Cook multiplication algorithms in that
higher precision range.

3.6 High-Level Operations: Faithful Rounding of 2-norms

In the last Section, we have seen an enhancement to IEEE754 in terms of additional
formats, providing more precision than the classical, binary IEEE754 formats, such as binary32,
binary64 or binary128.

In this Section, we shall now see how the IEEE754 Standard could also be extended: by
adding support for high-level operations. Hence, the current gap between IEEE754 and
standard libraries like BLAS [167] would level out over time. This Section is based on an
article we published in [101].

3.6.1 Introduction

Computing the 𝑙2-norm ‖x‖2 =
√︁∑︀𝑛

𝑗=1 𝑥
2
𝑗 of a vector x = [𝑥1, 𝑥2, . . . , 𝑥𝑛]𝑇 is prevalent

in scientific and engineering applications. This operation is part of the first (lowest) level

of the Basic Linear Algebra Subroutine BLAS1. The formula
√︁∑︀𝑛

𝑗=1 𝑥
2
𝑗 is misleading in

that it is not suitable for implementation, as the straightforward summing of squares can
cause unwarranted (spurious) overflows or underflows, while ‖x‖2 itself is well within the
representable range of floating-point arithmetic. Common implementations such as the
public version of LAPACK [8] released by netlib 33 essentially compute the 𝑙2-norm as
̂︀𝑥 × ‖x/̂︀𝑥‖2 where ̂︀𝑥 is max𝑗 |𝑥𝑗 |. This computation requires 𝑛 divisions in total, which is
significantly more expensive than the naive formula would suggest. Furthermore, in the
worst-case scenario, the last log10(𝑛) digits of the result could be corrupted. Improving the
accuracy of 𝑙2-norm computation benefits computation not only in reduction of error, but also
improving the chances of reproducible numerical results, should the 𝑙2-norm computation be

33. www.netlib.org
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done in parallel, with threads or vector-floating-point instructions 34.

In this Section, we present a new division-free 𝑙2-norm algorithm that is amenable to straight-
forward parallel implementation. We prove that the algorithm always returns a faithfully
rounded result, to be defined rigorously later. For now (and informally), this means that
the result is accurate to within one bit of the underlying floating-point type. The algorithm
is provably free from spurious overflow or underflow: that is, one of these exceptions is
triggered only when the true value ‖x‖2 calls for the event. Our implementation runs about
4.5 times faster than the netlib version.

There are two main features of our algorithm. First, it accumulates the squares, 𝑥2𝑗 , using a
pair of floating-point numbers, providing essentially the double of the underlying floating-
point precision. Our technique is similar to the addition operator in the double-double
library [178] but at almost twice the speed by exploiting the nonnegative nature of sum-
of-squares. We provide rigorous analysis of the accuracy properties of our accumulation.
Second, we eliminate all spurious exception by scaling the input data without using division.
The technique is a “binning” method and is similar to the one proposed in [16] except [16]
requires three bins and we use only two bins here, resulting in economy of registers usage and
performance improvement. The accumulation and binning are amenable to straightforward
parallel implementations. Our reference implementation uses data parallelism through SIMD
instructions, but adding thread parallelism is straightforward.

We organize the rest of this Section as follows. Section 3.6.2 defines the key technical terms
to make the Section self contained. We formulate our main problem and state our objective.
We present and establish the main theorem in Section 3.6.3. The essence is that if ‖x‖22 is
computed to enough accuracy as a floating-point pair as “leading”-plus-“correction,” then
a standard IEEE-conforming square root on the “leading” part yields a faithfully-rounded
𝑙2-norm. Section 3.6.4 presents a serial and a parallel 𝑙2-norm algorithm without binning. In
the absence of exceptions, we prove the numerical properties of these two algorithms that
will lay the foundation for the actual binned algorithms that add the spurious-exception-free
property. Section 3.6.5 presents the binned versions and the proofs of the faithful rounding
and spurious-exception-free nature. Section 3.6.6 shows numerical and performance test
results to corroborate with the theoretical analysis presented.

3.6.2 Background

Throughout this Section we consider a specific IEEE 754 binary floating-point type. Let F
denote, in this Section, the entire set of finite values in this type, identified by three parameters
𝜀, 𝑒min, and 𝑒max:

F = {±2𝑒+1𝑚𝜀 | 𝑚 ∈ N, 𝑒min 6 𝑒 6 𝑒max, 0 6 𝑚𝜀 < 1}.

Remark that in contrast to our global definitions, which we gave in Section 3.1, we need to
consider the boundedness of the exponent in a floating-point format in detail in this Section.
For this reason, we slighlty change the notation behind F.

For example, (𝜀, 𝑒min, 𝑒max) is (2−24,−126, 127) for binary32 format, and (2−53,−1022, 1023)
for binary64 format. We assume 𝜀 6 2−24 throughout this Section. Denote the smallest and

34. Clearly, a 𝑙2-norm routine that returns the correctly rounded floating-point result is always reproducible.
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largest positive normalized numbers by Fsmall = 2𝑒min and Flarge = 2𝑒max+1(1 − 𝜀). For
any real numbers 𝛼 ∈ R, |𝛼| 6 Flarge, ∘(𝛼) is the IEEE round-to-nearest-even function,
∘ : [−Flarge,Flarge] → F. The rounding ∘(𝛼) of a real number 𝛼 is the floating-point num-
ber in F that is closest to 𝛼, with a tie broken by choosing ∘(𝛼) to have an even mantissa
(least-significant bit being zero).

In order to define faithful rounding, we define the successor and predecessor functions:

succ : {−∞} ∪ F→F∪{+∞}

where
succ(𝑎) = min{ 𝑏 ∈ F∪{+∞} | 𝑏 > 𝑎 };

and
pred : F∪{+∞} → F∪{−∞}

where
pred(𝑎) = max{ 𝑏 ∈ {−∞} ∪ F | 𝑏 < 𝑎 }.

In this Section, we shall consider the ulp (units of last place) function to be defined for all real
numbers 𝛼 ∈ R, |𝛼| 6 Flarge by

ulp(𝛼) =

{︃
2𝑒+1𝜀 if |𝛼| ∈ [2𝑒, 2𝑒+1), 𝑒 > 𝑒min,
2𝑒min+1𝜀 otherwise.

This definition takes into account the existence of subnormal floating-point formats in the
IEEE754 formats, which we often times consider apart from the main flow of the proofs. In
this Section however, we intrinsically strive to manipulating input vectors with IEEE754
floating-point values that do contain subnormal numbers.

For any real number 𝛼 and integer 𝑘 such that Fsmall 6 |𝛼|, |2𝑘𝛼| 6 Flarge, ulp(2𝑘𝛼) =
2𝑘ulp(𝛼), and ulp(𝛼) 6 2|𝛼|𝜀 with ulp(𝛼) = 2|𝛼|𝜀 if and only if log2(|𝛼|) is an integer.

It is easy to see that ∘(𝛼) is at worst half a unit of last place away from 𝛼: For a real number
|𝛼| 6 Flarge, |𝛼| ∈ [2𝑒, 2𝑒+1], | ∘ (𝛼)− 𝛼| 6 2𝑒𝜀.

Given any 𝛼 ∈ R, |𝛼| 6 Flarge, the faithful rounding, ◇(𝛼), of 𝛼 is a set

◇(𝛼) = { 𝑎 ∈ F | pred(𝑎) < 𝛼 < succ(𝑎) }.

In particular, ◇(𝛼) = {𝛼} is the singleton containing 𝛼, if 𝛼 is already a floating-point number
in F. Otherwise, it contains just two elements – those closest to 𝛼 from below and above.

This Section presents a parallelizable and division-free algorithm AccuNrm2 such that for all
vectors x of practical length, AccuNrm2(x) ∈ ◇(‖x‖2) where x = [𝑥1, 𝑥2, . . . , 𝑥𝑛]𝑇 , 𝑥𝑗 ∈ F, and
‖x‖2 6 Flarge. We wish to emphasize here that achieving faithful rounding is non-trivial. It
can be shown that ∘(

√︀
∘(𝜎)) ∈ ◇(‖x‖2), where 𝜎 =

∑︀
𝑗 𝑥

2
𝑗 = x𝑇x is the exact sum of squares

(or inner product). This says the correctly rounded square root of the correctly rounded sum
of squares is a faithfully rounded 𝑙2-norm. Nevertheless, computing the correctly rounded
sums of squares is very expensive [201, 231, 232]. On the other hand, examples exist where
∘(
√
𝑆) /∈ ◇(‖x‖2) for some 𝑆 ∈ ◇(𝜎). That is, computing the 𝜎 to only slightly worse than

the correctly rounded dot product can cause unfaithful rounding. Our algorithm in essence
computes a floating-point number 𝑆 ≈ 𝜎 very accurately and yet efficiently. Theorem 1 gives
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a condition on the accuracy of 𝑆 that guarantees ∘(
√
𝑆) to be a faithful rounding of ‖x‖2. The

fact ∘(
√︀
∘(𝜎)) ∈ ◇(‖x‖2) alluded to earlier follows trivially from Theorem 1 as well.

It is then important to accurately compute 𝜎 =
∑︀

𝑗 𝑥
2
𝑗 . As we will see later, it is possible to

transform this computation into a sum without loss of information (no rounding error). The
problem is now transformed into the accurate computation of a sum. There is an abundant
literature about floating-point summation (see [111, chap. 4], [138, 201, 228, 231, 232, 262, 263]
and references thereof). For our purpose, we only need an accurate summation algorithm
whose precision is doubled because the entries are nonnegative numbers. For such a precision,
a straightforward adaptation of the algorithm Sum2 [201] is very efficient since it requires
8(𝑛− 1) flops (𝑛 being the size of the vector). The resulting sum has a relative error no more
than on the order of 𝑛2𝜀2. Another choice is to use the double-double arithmetic [178]. The
resulting sum is much more accurate, having a relative error no more than 2𝑛𝜀2/(1− 2𝑛𝜀2).
The cost, however, is 20(𝑛− 1) flops. The difference between the two algorithms comes from
the “renormalization steps” that are present in the double-double library. As will be shown
later, an error bound in the order of 𝑛𝜀2 as opposed to 𝑛2𝜀2 is crucial if faithful rounding
is to be guaranteed for a general vector length 𝑛. We therefore devise an algorithm that is
faster than the addition operator in the double-double library. Instead of performing two
renormalization steps in the addition of two double-double numbers, we perform only one
renormalization step in a careful manner that allows us to deliver a sum whose relative error
is bounded by 3𝑛𝜀2/(1− 3𝑛𝜀2), at the cost of 11(𝑛− 1) flops, which is almost twice as fast as
20(𝑛− 1) flops.

A naive computation of the 𝑙2-norm can cause spurious overflow and underflow. The netlib
library addresses the overflow but not underflow. Spurious underflow can cause significant
performance degradation. Moreover, the use of ordinary summation is not very accurate.
Blue’s work [16] uses 3 bins to address spurious exceptions, but the accuracy is comparable
to the netlib version. Our algorithm now addresses both the problems of accuracy (faithful
rounding) and spurious exceptions with better performance than netlib version.

We will state without proving the following elementary facts about floating-point arithmetic:

— Let 𝑎, 𝑏 ∈ F. The absolute error bound

| ∘ (𝑎 ∙ 𝑏)− (𝑎 ∙ 𝑏)| 6 ulp(𝑎 ∙ 𝑏)/2

holds for all ∙ ∈ {+,−,×,÷} provided |𝑎 ∙ 𝑏| 6 Flarge. The relative error bound

∘(𝑎 ∙ 𝑏) = (𝑎 ∙ 𝑏)(1 + 𝛿), |𝛿| 6 𝜀

holds for ∙ ∈ {+,−} as long as |𝑎 ∙ 𝑏| 6 Flarge. For ∙ ∈ {×,÷}, this relative error bound
holds if Fsmall 6 |𝑎 ∙ 𝑏| 6 Flarge.

— The notations ⊕, ⊖, ⊗, etc., stand for floating-point operations. For example, 𝑐← 𝑎⊕ 𝑏
means 𝑐 = ∘(𝑎+ 𝑏). We distinguish between ∘(𝑎+ 𝑏+ 𝑐) and 𝑎⊕ (𝑏⊕ 𝑐); the former is
rounding to nearest (once) the exact real number 𝑎+ 𝑏+ 𝑐 and the latter is ∘(𝑎+∘(𝑏+ 𝑐)).

— Rounding to nearest is monotonic. Given real numbers 𝛼, 𝛽 ∈ [−Flarge,Flarge], 𝛼 6 𝛽
implies ∘(𝛼) 6 ∘(𝛽).

— For 𝑎 ∈ F, 0 6 𝑎 < Flarge, succ(𝑎) = 𝑎+ ulp(𝑎).
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— For 𝑎, 𝑏 ∈ F, 𝑆 = ∘(𝑎+ 𝑏) ∈ F, then 𝑎+ 𝑏− 𝑆 ∈ F. In particular 𝑠 def
= 𝑎+ 𝑏− 𝑆 satisfies

the relationship 𝑆 + 𝑠 = 𝑎+ 𝑏 and ∘(𝑆 + 𝑠) = 𝑆. Furthermore, 𝑆 and 𝑠 can be computed
from 𝑎 and 𝑏 by a sequence of instructions involving ⊕ and ⊖ (see for example [138]
Thm B, page 236, and [71, 192]). We denote these by two functions TwoSum(𝑎, 𝑏) and
FastTwoSum(𝑎, 𝑏). They deliver 𝑆 and 𝑠 where 𝑆 + 𝑠 = 𝑎 + 𝑏 and ∘(𝑆 + 𝑠) = 𝑆. The
former handles general 𝑎 and 𝑏 and requires 6 floating-point operations; the latter
requires only 3 floating-point operations, but works only when |𝑎| > |𝑏|. Mapping 𝑎, 𝑏
to 𝑆, 𝑠 is usually called an error-free transformation as 𝑎+ 𝑏 = 𝑆 + 𝑠 exactly.

— Similar to error-free transformations for sum, we have error-free transformations for
product. For 𝑎, 𝑏 ∈ F, |𝑎𝑏| > Fsmall/𝜀, and 𝑃 = ∘(𝑎 × 𝑏) ∈ F, then 𝑎 × 𝑏 − 𝑃 ∈ F. In

particular 𝑝 def
= 𝑎×𝑏−𝑃 satisfies the relationship 𝑃 +𝑝 = 𝑎×𝑏 and ∘(𝑃 +𝑝) = 𝑃 . 𝑃 and

𝑝 can be computed from 𝑎 and 𝑏 with the IEEE754-2008 fused multiply-add instruction:
𝑃 ← 𝑎⊗ 𝑏 and 𝑝← ∘(𝑎× 𝑏− 𝑃 ). Alternatively, one can use a sequence of ⊕, ⊖ and ⊗
instructions as outlined in [71, 192]. We denote the exact product function that returns
𝑃 and 𝑝 by TwoProd(𝑎, 𝑏).

3.6.3 Main Theorem

The goal is to compute ‖x‖2 =
√
𝜎, 𝜎 =

∑︀𝑛
𝑗=1 𝑥

2
𝑗 , faithfully. Our algorithm is built on

the core case, when 𝜎 is within the “normal” range of [Fsmall,Flarge]. We first compute an
accurate floating-point approximation, 𝑆, to 𝜎. The IEEE square root (correctly rounded)
∘(
√
𝑆) is returned as the final result. This section shows that if 𝑆 is accurate to within a

specific threshold, the final result is faithful: ∘(
√
𝑆) ∈ ◇(√𝜎) = ◇(‖x‖2).

Lemma 2. Let 𝛼, 𝛼′ be two real numbers in the interval [2𝑒, 2𝑒+1] where 𝑒min 6 𝑒 < 𝑒max. If
|𝛼′ − 𝛼| < 2𝑒𝜀, then correctly rounding 𝛼′ is a faithful rounding of 𝛼, that is, ∘(𝛼′) ∈ ◇(𝛼).

Proof. We observe that

𝛼′ ∈ [2𝑒, 2𝑒+1] =⇒ 𝑎
def
= ∘(𝛼′) ∈ [2𝑒, 2𝑒+1] ∩ F.

Consequently,
|𝑎− 𝛼| 6 |𝑎− 𝛼′|+ |𝛼′ − 𝛼| < ulp(2𝑒).

Thus succ(𝑎) > 𝑎 + ulp(2𝑒) > 𝛼. If 𝑎 6 𝛼, then pred(𝑎) < 𝛼. Otherwise, 2𝑒 < 𝛼 6 2𝑒+1 and
pred(𝑎) = 𝑎− ulp(2𝑒). Thus pred(𝑎) is also strictly less than 𝛼. As a result,

pred(𝑎) < 𝛼 < succ(𝑎)

and 𝑎 ∈ ◇(𝛼) by definition.

Lemma 3. Let 𝜎 ∈ [Fsmall,Flarge] be a real number in the interval [2𝑒, 2𝑒+1) and 𝑆, 𝑠 ∈
F∩[Fsmall,Flarge] where ∘(𝑆+ 𝑠) = 𝑆. If |(𝑆+ 𝑠)−𝜎| < 𝜎𝜀/2, then 𝑆 ∈ [2𝑒, 2𝑒+1] and |𝑠| 6 2𝑒𝜀.

Proof. From the assumptions,

𝑆 + 𝑠 < 2𝑒+1 +
2𝑒+1𝜀

2
= 2𝑒+1 +

ulp(2𝑒+1)

4
.
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Thus ∘(𝑆 + 𝑠) 6 2𝑒+1. Similarly,

𝑆 + 𝑠 > 2𝑒 − 2𝑒𝜀

2
> 2𝑒 − ulp(2𝑒−1)

2
.

Thus ∘(𝑆 + 𝑠) > 2𝑒. Consequently, 𝑆 ∈ [2𝑒, 2𝑒+1]. To estimate 𝑠, consider the case 𝑆 + 𝑠 ∈
[2𝑒, 2𝑒+1]. In this case, |𝑠| = | ∘ (𝑆 + 𝑠) − (𝑆 + 𝑠)| 6 2𝑒𝜀. Otherwise, 𝑆 + 𝑠 /∈ [2𝑒, 2𝑒+1] and
𝑆 ∈ [2𝑒, 2𝑒+1]. Thus either 𝑆 = 2𝑒 with 𝑠 < 0, or 𝑆 = 2𝑒+1 and 𝑠 > 0. Moreover, summarizing
the inequalities established so far, we have

2𝑒 − 2𝑒𝜀

2
< 𝑆 + 𝑠 < 2𝑒+1 + 2𝑒𝜀.

Thus either 0 < 𝑠 < 2𝑒𝜀 or −2𝑒𝜀/2 < 𝑠 < 0, both implying |𝑠| < 2𝑒𝜀, and the proof is
complete.

Theorem 1. Let 𝜎 ∈ [Fsmall,Flarge] be a real number and 𝑆, 𝑠 ∈ F∩[Fsmall,Flarge] where ∘(𝑆 +
𝑠) = 𝑆. If |(𝑆 + 𝑠)− 𝜎| < 𝜀𝜎/8, then ∘(

√
𝑆) ∈ ◇(√𝜎).

Proof. We establish this theorem by showing
√
𝜎 and

√
𝑆 satisfy the conditions for 𝛼 and 𝛼′

in Lemma 2.

|(𝑆 + 𝑠)− 𝜎| < 𝜀𝜎/8 implies

𝑆 + 𝑠 > (1− 𝜀/8)𝜎,

𝑆 > (1− 𝜀)(1− 𝜀/8)𝜎,

> (1− 3𝜀/2)𝜎,√
𝑆 > (1− 3𝜀/2)

√
𝜎. (3.48)

The last equation holds as
√︀

1− 3𝜀/2 > 1− 3𝜀/2. We can estimate |
√
𝑆 −√𝜎| by

|
√
𝑆 −√𝜎| =

|𝑆 − 𝜎|√
𝑆 +
√
𝜎
,

<
𝜀𝜎/8 + |𝑠|

2
√
𝜎(1− 3𝜀/4)

, using Equation (3.48),

<

(︂
𝜀

16

√
𝜎 +

|𝑠|
2
√
𝜎

)︂
(1 + 𝜀). (3.49)

The value 𝜎 must lie in a unique interval of the form 𝜎 ∈ [22𝑒, 22𝑒+2), corresponding to√
𝜎 ∈ [2𝑒, 2𝑒+1) ⊂ [2𝑒, 2𝑒+1]. By Lemma 3, 𝑆 ∈ [22𝑒, 22𝑒+2] and thus

√
𝑆 ∈ [2𝑒, 2𝑒+1]. By virtue

of Lemma 2, the theorem here is established provided |
√
𝑆 −√𝜎| < 2𝑒𝜀. A simple tabulation

suffices.

𝜎/22𝑒
√
𝜎/2𝑒 |𝑠|/22𝑒 |

√
𝑆 −√𝜎|/(2𝑒𝜀)

∈ [1, 2) ∈ [1,
√

2) 6 𝜀 <
(︁√

2
16 + 1

2

)︁
(1 + 𝜀)

∈ [2, 4) ∈ [
√

2, 2) 6 2𝜀 <
(︁
1
8 + 1√

2

)︁
(1 + 𝜀)

Clearly, |
√
𝑆 −√𝜎| < 2𝑒𝜀 always and ∘(

√
𝑆) ∈ ◇(√𝜎) as claimed.
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3.6.4 Core Case

Let x = [𝑥1, 𝑥2, . . . , 𝑥𝑛]𝑇 be the vector in question. The core algorithm considers the
case of normal range in the sense that 𝜎 = x𝑇x is safely away from overflow and that
the least significant bit of each of the 𝑥2𝑗 does not underflow. More formally, we consider
Fsmall/𝜀

2 6 𝑥2𝑗 6 Flarge for all 𝑗 and 𝜎 6 Flarge/2.

We use a data type, double-FP, consisting of two floating-point numbers. We denote them,
for example, by A = [𝐴, 𝑎]. A is the double-FP variable, and the actual pairs of floating-point
numbers are𝐴 and 𝑎. They have the characteristics ∘(𝐴+𝑎) = 𝐴, which means that 𝑎 is a “tail”
part to add extra precision to 𝐴. The mathematical sum of the two components represents a
value of at least twice the precision of the underlying floating-point number. Here is the core
algorithm for computing the sum of squares

∑︀
𝑗 𝑥

2
𝑗 .

function SumOfSquares(x) // Accurate accumulation
S← [0, 0]
for 𝑗 = 1, 2, . . . , 𝑛 do:

P← TwoProd(𝑥𝑗 , 𝑥𝑗)
// P = [𝑃, 𝑝], 𝑃 + 𝑝 = 𝑥2

𝑗 exactly
S← SumNonNeg(S,P)

return S
end SumOfSquares

function SumNonNeg(A,B) // [𝐴, 𝑎]+ [𝐵, 𝑏]
// error bound of this operation 3𝜀2 (Theorem 2)
// A = [𝐴, 𝑎],B = [𝐵, 𝑏] nonnegative: 𝐴+ 𝑎,𝐵 + 𝑏 > 0

H← TwoSum(𝐴,𝐵)
// H = [𝐻,ℎ], 𝐻 + ℎ = 𝐴+𝐵 exactly
𝑐← 𝑎⊕ 𝑏 // 𝑐 = 𝑎+ 𝑏+ 𝛿𝑐
𝑑← ℎ⊕ 𝑐 // 𝑑 = ℎ+ 𝑐+ 𝛿𝑑.
S← FastTwoSum(𝐻, 𝑑)
// S = [𝑆, 𝑠], 𝑆 + 𝑠 = 𝐻 + 𝑑 exactly
//see Section 3.6.2 for TwoSum and FastTwoSum.
return S

end SumNonNeg

Theorem 1 guarantees that if [𝑆, 𝑠] returned by SumOfSquares satisfies |(𝑆 + 𝑠)− 𝜎| < 𝜀𝜎/8,
then ∘(

√
𝑆) is a faithful rounding of

√
𝜎 = ‖x‖2. Since SumOfSquares is summing 𝑛 double-

FP type, standard error analysis (see for example Chapter 3 of [111]) shows that the relative
error is bounded by ∆𝑛−1(𝛿) where ∆ℓ(𝛿) = ℓ𝛿/(1− ℓ𝛿) and 𝛿 is the relative error bound on
the underlying addition operation, which is the SumNonNeg function. Theorem 2 shows that
this 𝛿 is 3𝜀2. From that we can deduce the length limit of x within which |(𝑆 + 𝑠)− 𝜎| < 𝜀𝜎/8.

Theorem 2. Let S = [𝑆, 𝑠] be the result from applying SumNonNeg on nonnegatives A =
[𝐴, 𝑎] and B = [𝐵, 𝑏]. Let 𝛼 = 𝐴+ 𝑎 > 0, 𝛽 = 𝐵 + 𝑏 > 0 denote the exact input values, and
𝜎 = 𝛼+ 𝛽 denote the exact sum. Then |(𝑆 + 𝑠)− 𝜎| 6 3𝜀2𝜎.

Proof. The theorem clearly holds if one of 𝛼 or 𝛽 is zero. Moreover, it is clear that SumNonNeg
is insensitive to the order of its two input arguments. It suffices therefore to consider 𝛼 > 𝛽 >
0. There are only two rounding errors in the entire function: 𝛿𝑐 = 𝑐−(𝑎+𝑏) = ∘(𝑎+𝑏)−(𝑎+𝑏)
and 𝛿𝑑 = 𝑑− (ℎ+ 𝑐) = ∘(ℎ+ 𝑐)− (ℎ+ 𝑐). More precisely, 𝑆 + 𝑠 = 𝐻 + 𝑑 and

𝐻 + 𝑑 = 𝐻 + ℎ+ 𝑎+ 𝑏+ 𝛿𝑐 + 𝛿𝑑 = 𝜎 + 𝛿𝑐 + 𝛿𝑑.
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Thus |(𝑆 + 𝑠)− 𝜎| 6 |𝛿𝑐|+ |𝛿𝑑|. The rest of the proof establishes the fact |𝛿𝑐|+ |𝛿𝑑| 6 3𝜀2𝜎.

We use this fact heavily: For any real number 𝛾 where 𝛾 ∈ R ∩ [Fsmall,Flarge], | ∘ (𝛾) − 𝛾| 6
ulp(𝛾)/2. Let

𝛼 = 2𝑒𝛼(1 + 𝑓𝛼), 𝛽 = 2𝑒𝛽 (1 + 𝑓𝛽), and 𝜎 = 2𝑒𝜎(1 + 𝑓𝜎)

where 0 6 𝑓𝛼, 𝑓𝛽, 𝑓𝜎 < 1.

𝜎 > 𝛼 > 𝛽 =⇒ ulp(𝜎) > ulp(𝛼) > ulp(𝛽).

Because |𝑎| 6 ulp(𝛼)/2, |𝑎| 6 ulp(𝜎)/2. Similarly, |𝑏| 6 ulp(𝜎)/2. Therefore, 𝐴 + 𝐵 =
𝜎 − (𝑎+ 𝑏) 6 𝜎 + ulp(𝜎), which implies ulp(𝐴+𝐵) 6 2ulp(𝜎).

We note that |𝛿𝑐| = | ∘ (𝑎+ 𝑏)− (𝑎+ 𝑏)| 6 ulp(𝑎+ 𝑏)/2 and |𝑎+ 𝑏| 6 ulp(𝜎). But |𝑎+ 𝑏| = ulp(𝜎)
only when |𝑎| = |𝑏| = ulp(𝜎)/2, which implies 𝑎+ 𝑏 is representable exactly in F and 𝛿𝑐 = 0.
When |𝑎+ 𝑏| < ulp(𝜎), we have ulp(𝑎+ 𝑏) 6 ulp(𝜎/2). Hence

|𝛿𝑐| 6
1

2
ulp(ulp(𝜎/2)) =

ulp(𝜎)

2
𝜀 6 𝜎𝜀2, (3.50)

using basic properties of the ulp function stated in Section 3.6.2.

We now show that |𝛿𝑑| 6 2𝜎𝜀2.

|𝛿𝑑| = | ∘ (ℎ+ 𝑐)− (ℎ+ 𝑐)|,
6

1

2
ulp(ℎ+ 𝑐),

6
1

2
ulp(ulp(𝐴+𝐵)/2 + |𝑐|),

6
1

2
ulp(ulp(𝜎) + |𝑐|). (3.51)

To complete the estimate on |𝛿𝑑|, we analyze |𝑐|. There are only two possibilities: 𝑒𝛼 = 𝑒𝛽 or
𝑒𝛼 > 𝑒𝛽 + 1. We show that either situation leads to |𝛿𝑑| 6 2𝜎𝜀2.

Consider the case of 𝑒𝛼 > 𝑒𝛽 + 1. We have |𝑎| 6 ulp(𝜎)/2 and |𝑏| 6 ulp(𝜎)/4. Therefore,

|𝑐| = | ∘ (𝑎+ 𝑏)| 6 |𝑎+ 𝑏|(1 + 𝜀) 6
3

4
(1 + 𝜀)ulp(𝜎).

Equation (3.51) implies

|𝛿𝑑| 6
1

2
ulp(ulp(𝜎) +

3

4
(1 + 𝜀)ulp(𝜎)),

6
1

2
ulp(ulp(𝜎)),

= 2𝜎𝜀2. (3.52)

Consider the case of 𝑒𝛼 = 𝑒𝛽 . In this situation, we must have 𝑒𝜎 = 𝑒𝛼 + 1 and ulp(𝛼) =
ulp(𝛽) = ulp(𝜎)/2. As a result, |𝑎|+ |𝑏| 6 ulp(𝜎)/2 and |𝑐| 6 (1 + 𝜀)ulp(𝜎)/2, so

|𝛿𝑑| 6
1

2
ulp(ulp(𝜎) +

1

2
(1 + 𝜀)ulp(𝜎)),

6
1

2
ulp(ulp(𝜎)),

= 2𝜎𝜀2. (3.53)
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Equations (3.50), (3.52) and (3.53) together show that |𝛿𝑐| + |𝛿𝑑| 6 3𝜎𝜀2, and the theorem is
proved.

Theorem 3. Let 𝑛 be the length of the vector x, 𝑥2𝑗 ∈ [Fsmall/𝜀
2,Flarge/2] for all 𝑗, and 𝜎 6

Flarge/2 where 𝜎 =
∑︀

𝑗 𝑥
2
𝑗 . Let SumOfSquares(x) return the result [𝑆, 𝑠]. Then

|(𝑆 + 𝑠)− 𝜎| 6 ∆𝑛−1(3𝜀
2)𝜎

where ∆ℓ(𝛿) = ℓ𝛿/(1− ℓ𝛿). In particular, if the length 𝑛 satisfies 𝑛 < ((24 + 𝜀)𝜀)−1, then

|(𝑆 + 𝑠)− 𝜎| < 𝜀𝜎/8.

Proof. From Theorem 2 and standard error bound on adding 𝑛 nonnegative floating-point
types [111] with an addition operation of relative error bounded by 3𝜀2,

|(𝑆 + 𝑠)− 𝜎| 6 ∆𝑛−1(3𝜀
2).

Because ∆ℓ(𝛿) is an increasing function in ℓ in the range 0 6 ℓ < 1/𝛿, for 𝑛 < ((24 + 3𝜀)𝜀)−1,

∆𝑛−1(3𝜀
2) < ∆𝑛(3𝜀2) < ∆𝐿(3𝜀2) =

𝜀

8
,

where 𝐿 = ((24 + 3𝜀)𝜀)−1.

We parallelize SumOfSquares in an obvious manner: partition the input vector x to 𝜏
subvectors of roughly equal length. Perform the sum of squares on each subvector in parallel.
This parallelism can be realized either at the thread level or data level, the latter using vector
instructions such as SSE. The partial sums of squares are then accumulated in a serial manner.

function SumOfSquaresP(x) // Parallel SumOfSquares
Partition x into 𝜏 portions, x(𝑡), 𝑡 = 1, 2, . . . , 𝜏
// length of each x(𝑡) is no more than 𝑚 = ⌈𝑛/𝜏⌉.
S(𝑡) ← SumOfSquares(x(𝑡)), 𝑡 = 1, 2, . . . , 𝜏 .
// In parallel, each S(𝑡) = [𝑆(𝑡), 𝑠(𝑡)] is a double-FP.
S← [0, 0]; S← SumNonNeg(S,S(𝑡)), 𝑡 = 1, 2, . . . , 𝜏 .
// In serial, summing the 𝜏 partial sums of squares
// S = [𝑆, 𝑠] at this point; 𝑆 + 𝑠 ≈

∑︀𝑛
𝑗 𝑥

2
𝑗 .

return S
end SumOfSquaresP

Theorem 4. Let 𝑛 be the length of x and S = [𝑆, 𝑠] be the result of SumOfSquaresP(x) with
𝜏 portions and 𝑚 = ⌈𝑛/𝜏⌉. Then

|(𝑆 + 𝑠)− 𝜎| 6 ∆𝑚+𝜏 (3𝜀3)𝜎.

In particular,
|(𝑆 + 𝑠)− 𝜎| 6 ∆𝑛−1(3𝜀

3)

whenever 𝑚+ 𝜏 6 𝑛− 1.
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Proof. We document the two stages of errors with the following notations. Let 𝜎(𝑡) =
(x(𝑡))𝑇x(𝑡), 𝑡 = 1, 2, . . . , 𝜏 , and 𝜎 =

∑︀𝜏
𝑡=1 𝜎

(𝑡) denote the exact partial and exact complete
inner products, respectively. Let

̃︀𝜎(𝑡) = 𝑆(𝑡) + 𝑠(𝑡), approx partials 1 6 𝑡 6 𝜏 ,
̃︀𝜎 =

∑︀𝜏
𝑡=1 ̃︀𝜎(𝑡), exact sum of approx partials,

̃︀̃︀𝜎 = 𝑆 + 𝑠, approx sum of approx partials.

For the computed partials, where we are summing no more than 𝑚 = ⌈𝑛/𝜏⌉ double-FP types,
we have

|̃︀𝜎(𝑡) − 𝜎(𝑡)| 6 ∆𝑚−1(3𝜀
2)𝜎(𝑡), 𝑡 = 1, 2, . . . , 𝜏,

and ⃒⃒
⃒⃒
⃒
𝜏∑︁

𝑡=1

(̃︀𝜎(𝑡) − 𝜎(𝑡))
⃒⃒
⃒⃒
⃒ 6 ∆𝑚−1(3𝜀

2)

𝜏∑︁

𝑗=1

𝜎(𝑡).

This implies

|̃︀𝜎 − 𝜎| 6 ∆𝑚−1(3𝜀
2)𝜎, (3.54)

̃︀𝜎 6 (1 + ∆𝑚−1(3𝜀
2))𝜎. (3.55)

Similarly,
|̃︀̃︀𝜎 − ̃︀𝜎| 6 ∆𝜏−1(3𝜀

2) ̃︀𝜎. (3.56)

Combining Equations (3.54) through (3.56),

|̃︀̃︀𝜎 − 𝜎|
𝜎

6 ∆𝜏−1(3𝜀
2) (̃︀𝜎/𝜎) + ∆𝑚(3𝜀2),

6 ∆𝜏−1(3𝜀
2) (1 + ∆𝑚−1(3𝜀

2)) + ∆𝑚(3𝜀2),

6 ∆𝜏 (3𝜀2) + ∆𝑚(3𝜀2), (3.57)
6 ∆𝑚+𝜏 (3𝜀2). (3.58)

Equation (3.57) follows from its preceding line as long as 3𝜀2 6 (𝑛 + 𝑚 + 2)−1, and Equa-
tion (3.58) follows from Equation (3.57) because ∆ℓ(3𝜀

2) + ∆ℓ′(3𝜀
2) 6 ∆ℓ+ℓ′(3𝜀

2). Finally,
whenever 𝑚+ 𝜏 6 𝑛− 1, ∆𝑚+𝜏 (3𝜀2) 6 ∆𝑛−1(3𝜀

2). The proof is now complete.

We remark that for any non-trivial length 𝑛 and practical value of 𝜏 , 𝑚+ 𝜏 6 𝑛− 1 always
as 𝑚 + 𝜏 ≈ 𝑛/𝜏 . This says that a parallel sum of squares is in general more accurate than
the serial version. In particular, as long as 𝑛 < ((24 + 𝜀)𝜀)−1 and [𝑆, 𝑠] is obtained from with
SumOfSquares or SumOfSquaresP, an IEEE conforming square root evaluation sqrt(𝑆)
produces a faithfully rounded ‖x‖2 for x, whose elements fall in the core range discussed
here.

3.6.5 General Case

That the simple accumulation of 𝜎 =
∑︀𝑛

𝑗=1 𝑥
2
𝑗 is susceptible to spurious exceptions can be

illustrated by the simple example of 𝑛 = 8, 𝑥𝑗 = ∘(2
√︀

Flarge) for 𝑗 6 4 and 𝑥𝑗 = ∘(√Fsmall/2),
𝑗 > 4. While ‖x‖2 is approximately 4

√︀
Flarge, overflows in computing 𝑥2𝑗 for 𝑗 6 4 leads
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to a computed 𝜎 of +∞, rendering the final computed 𝑙2-norm completely wrong. This
is why general-purpose software such as LAPACK’s public release essentially computes
̂︀𝑥
√︁∑︀

𝑗(𝑥𝑗/̂︀𝑥)2 where ̂︀𝑥 = max𝑗 |𝑥𝑗 |. This strategy indeed eliminates all spurious overflows
and ensures a correct numerical result. This algorithm, however, can still trigger spurious
underflows, which, while harmless to the final numerical result, would significantly degrade
performance on computing platforms that handle underflow via a trapping mechanism.

We present here an algorithm that computes ‖x‖2 faithfully without any spurious exceptions.
Let 𝜎 =

∑︀
𝑗 𝑥

2
𝑗 denote the sum of squares. Our algorithm computes 𝑍, a faithful rounding of

a scaled 𝑙2-norm ‖̂︀x‖2 = 𝛾−𝑚/2‖x‖2, that is 𝑍 ∈ ◇(‖̂︀x‖2). The factor 𝛾−𝑚/2 is chosen so that
𝛾𝑚 is an even power of 2, 𝛾−𝑚/2 ∈ F, and ‖̂︀x‖2 ∈ [Fsmall,Flarge]. The final result is returned,
naturally, as 𝛾𝑚/2⊗𝑍. If this multiplication generates an overflow or underflow, the exception
is non-spurious. In short, the two parts of our algorithm are computing 𝑍 and computing
𝛾𝑚/2 ⊗ 𝑍. While the latter seems trivial, it actually requires analysis as we need to guarantee
𝛾𝑚/2⊗𝑍 ∈ ◇(‖x‖2) given 𝑍 ∈ ◇(‖̂︀x‖2) – even if the last multiplication generates an exception.
We address this second part of the algorithm in the next theorem and devote the remaining
section to the computation of 𝑍.

Theorem 5. Let 𝜁 ∈ [Fsmall,Flarge] ∪ {0} be a real number and 𝑍 is a faithful rounding of 𝜁,
that is, 𝑍 ∈ ◇(𝜁). Then ∘(2𝑡𝑍) ∈ ◇(2𝑡𝜁) for any scaling 2𝑡 ∈ F, 𝑡 being an integer.

Proof. The theorem holds if 𝜁 is a floating-point point number to begin with. This is because
◇(𝜁) = {𝜁}, 𝑍 = 𝜁, and correctly rounding 2𝑡𝜁 is a faithful rounding of 2𝑡𝜁.

It suffices to consider 𝜁 /∈ F. In particular, Fsmall < 𝜁 < Flarge. As 𝜁 is not a floating-point
number and Fsmall < 𝜁 < Flarge, ◇(𝜁) has exactly two floating-point numbers, 𝑎 and 𝑏, where

Fsmall 6 𝑎 < 𝜁 < 𝑏 6 Flarge, 𝑏 = succ(𝑎) = 𝑎+ ulp(𝑎).

Represent 𝑎 as 𝑎 = 2𝑒𝑎 + 2𝑒𝑎𝑚ulp(2𝑒𝑎), 0 6 𝑚 6 𝜀−1 − 1. In particular, 𝑏 ∈ [2𝑒𝑎 , 2𝑒𝑎+1].
Moreover, 𝑍 is either 𝑎 or 𝑏. Since the theorem is trivially true for 2𝑡 = 1, it suffices to consider
the two cases of 𝑡 < 0 and 𝑡 > 0.

Consider 𝑡 < 0. If 𝑒𝑎 + 𝑡 > 𝑒min, 2𝑡𝑎 and 2𝑡𝑏 are both floating-point numbers, 2𝑡𝑎 < 2𝑡𝜁 < 2𝑡𝑏
and 2𝑡𝑏 = succ(2𝑡𝑎). Therefore ∘(2𝑡𝑍) ∈ {∘(2𝑡𝑎), ∘(2𝑡𝑏)} = ◇(2𝑡𝜁). In case when 𝑒𝑎 + 𝑡 < 𝑒min,
because ∘(2𝑡𝑎) 6 ∘(2𝑡𝜁) 6 ∘(2𝑡𝑏) by monotonicity of correct rounding, we either have
∘(2𝑡𝑎) = ∘(2𝑡𝑏) or 0 6 ∘(2𝑡𝑎) < ∘(2𝑡𝑏). In the former case, ∘(2𝑡𝑎) = ∘(2𝑡𝜁) = ∘(2𝑡𝑏) and thus
∘(2𝑡𝑍) = ∘(2𝑡𝑎) = ∘(2𝑡𝑏) ∈ ◇(2𝑡𝜁). In the latter case, we note that ∘(2𝑡𝑏) 6 2𝑒min . This is
because 𝑏 ∈ [2𝑒𝑎 , 2𝑒𝑎+1]. Let 𝑢 = 2𝑒min+1𝜀 denote the unit of last place in the underflow region
[0, 2𝑒min ]. Both 𝑎 and 𝑏 are integer multiples of 𝑢, and | ∘ (2𝑡𝑎) − 2𝑡𝑎|, | ∘ (2𝑡𝑏) − 2𝑡𝑏| 6 𝑢/2
imply

| ∘ (2𝑡𝑎)− ∘(2𝑡𝑏)| 6 𝑢+ |2𝑡(𝑏− 𝑎)|,
6 𝑢+ 2𝑒𝑎+𝑡+1𝜀,

6 3𝑢/2.

Thus | ∘ (2𝑡𝑎)−∘(2𝑡𝑏)| = 𝑢 and there are no floating-point numbers between ∘(2𝑡𝑎) and ∘(2𝑡𝑏).
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Note that

| ∘ (2𝑡𝑎)− 2𝑡𝜁| 6 | ∘ (2𝑡𝑎)− 2𝑡𝑎|+ 2𝑡|𝑎− 𝜁|
<

𝑢

2
+ 2𝑒𝑎+𝑡+1𝜀

< 𝑢.

Similarly, | ∘ (2𝑡𝑏)− 2𝑡𝜁| < 𝑢. Hence, we must have 2𝑡𝜁 in between ∘(2𝑡𝑎) and ∘(2𝑡𝑏) and once
again ∘(2𝑡𝑍) ∈ {∘(2𝑡𝑎), ∘(2𝑡𝑏)} = ◇(2𝑡𝜁).

The case of 𝑡 > 0 is simple. If 2𝑡𝑎 > Flarge, then 2𝑡𝜁 > Flarge and ◇(2𝑡𝜁) = {Flarge,+∞} by
definition. On the other hand, ∘(2𝑡𝑍) ∈ {∘(2𝑡𝑎), ∘(2𝑡𝑏)} ⊆ {Flarge,+∞}. If 2𝑡𝑎 < Flarge, then
2𝑡𝑎 is a floating-point number and 2𝑡𝑎 6 pred(Flarge). This means that 2𝑡𝑏 6 Flarge is also a
floating-point number. Consequently,

∘(2𝑡𝑎) = 2𝑡𝑎 = pred(2𝑡𝑏) = pred(∘(2𝑡𝑏)).

Finally, by monotonicity of correct rounding, 2𝑡𝑎 < 2𝑡𝜁 < 2𝑡𝑏 implies

∘(2𝑡𝑎) 6 ∘(2𝑡𝜁) 6 ∘(2𝑡𝑏).

This means that ◇(2𝑡𝜁) = {∘(2𝑡𝑎), ∘(2𝑡𝑏)} and indeed ∘(2𝑡𝑍) ∈ ◇(2𝑡𝜁). The proof is thus
complete.

We turn now to the computation of a scaled 𝑙2-norm. A known strategy [16] partitions the
input data into three bins. The data in each bin are scaled by a common scale factor so that
sums of squares of elements in each bin incur no spurious exceptions. The final result is
constructed by appropriate combination of the partial sums-of-squares from the bins. We
follow the same approach but with two enhancements. First, while we will explain our
approach using three bins, we will point out later that our implementation keeps only two
bins of data at any given time. This is important as the bins are in practice kept in the scarce
SIMD vector registers. Second, our combination of the binned partial sums of squares are
done in a way that guarantees a faithfully rounded scaled 𝑙2-norm.

The basic idea is to divide the entire input range of |𝑥𝑗 | into three “equal” subranges, where
sums of squares of data in the middle (interior) subrange does not generate exceptions. Data
in the two exterior ranges are scaled into the interior subrange. Now the specifics. Define the
even integer 𝐸 by

𝐸 = min{𝑒 | 3𝑒 > 𝑒max − 𝑒min − log2(𝜀), 𝑒 is even }.

From 𝐸, we define a scale factor 𝛾 = 2−𝐸 and use the following notations.

𝐸hi = 𝑒max + 1− 𝐸, 𝛽hi = 2𝐸hi ,

𝐸lo = 𝑒max + 1− 2𝐸, 𝛽lo = 2𝐸lo .
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In particular, 𝛾𝛽hi = 𝛽lo. We tabulate the specific values for binary32 and binary64 here.

𝐸 𝐸hi 𝐸lo 𝛽hi𝛽lo

binary32 94 34 −60 2−26 = 𝜀/4

binary64 700 324 −376 2−52 = 2𝜀

Given the input vector x = [𝑥1, 𝑥2, . . . , 𝑥𝑛]𝑇 , the three bins are

𝒜 = { 𝛾𝑥𝑗 | |𝑥𝑗 | > 𝛽hi },
ℬ = { 𝑥𝑗 | 𝛽lo 6 |𝑥𝑗 | < 𝛽hi },
𝒞 = { 𝑥𝑗/𝛾 | |𝑥𝑗 | < 𝛽lo }.

By design 𝛽lo 6 |̂︀𝑥𝑗 | < 𝛽hi for ̂︀𝑥𝑗 ∈ 𝒜 ∪ ℬ ∪ 𝒞. Denote the partial, scaled, sums-of-squares as

̂︀𝜎𝒜 def
=
∑︁

̂︀𝑥𝑗∈𝒜 ̂︀𝑥
2
𝑗 , ̂︀𝜎ℬ

def
=
∑︁

̂︀𝑥𝑗∈ℬ ̂︀𝑥
2
𝑗 , and ̂︀𝜎𝒞 def

=
∑︁

̂︀𝑥𝑗∈𝒞 ̂︀𝑥
2
𝑗 .

Clearly, the “bin-sums” are in the range

̂︀𝜎𝒜, ̂︀𝜎ℬ, ̂︀𝜎𝒞 ∈ {0} ∪ [𝛽2lo, 𝑛𝛽
2
hi) ⊆ {0} ∪ [𝛽2lo, 𝛽

2
hi/𝜀), (3.59)

by assuming 𝑛 6 1/𝜀. A bin-sum is zero if and only if the corresponding bin is empty.
Furthermore,

𝜎 =
∑︁

𝑗

𝑥2𝑗 = 𝛾−2 ̂︀𝜎𝒜 + ̂︀𝜎ℬ + 𝛾2 ̂︀𝜎𝒞 . (3.60)

A straightforward implementation can collect all three bins, and invoke the SumOfSquares
function (or the parallel version) on each of the bins, followed by some appropriate combina-
tion method to arrive at the final result. Our implementation in fact only keeps and processes
two bins. The observation is that 𝒜 and 𝒞 are never needed simultaneously. If 𝒜 is nonempty,
then Equation (3.59) and the fact that 𝛾𝛽hi = 𝛽lo show that 𝛾2̂︀𝜎𝒞/(𝛾−2̂︀𝜎𝒜) 6 𝛾2/𝜀 ≪ 𝜀2.
Neglecting 𝛾2̂︀𝜎𝒞 altogether incurs a relative error (much) less than 𝜀2.

Briefly speaking, our implementation starts the binning process by keeping the interior
(middle) bin and one exterior bin. When the first element belonging to𝒜 appears, the existing
exterior bin is replaced with that element, and elements from 𝒞 are never collected from that
point onward. Denote the two actually maintained bins by 𝒰 and 𝒱 , then

𝜎2 = 𝛾𝑘 (̂︀𝜎𝒰 + 𝛾2̂︀𝜎𝒱),

where 𝑘 = −2 if 𝒰 corresponds to 𝒜, and 𝑘 = 0 if 𝒰 corresponds to ℬ. In either case, the
“two-bin” sum of squares 𝜎2 satisfies

|𝜎2 − 𝜎| 6 𝜀2𝜎, and 𝜎2 6 (1 + 𝜀2)𝜎. (3.61)

To compute 𝜎2, the SumOfSquares function is applied to each of the two resulting bins,
yielding two double-FP variables U = [𝑈, 𝑢] and V = [𝑉, 𝑣]. Both𝑈+𝑢 and 𝑉 +𝑣 approximate
their targets with high relative accuracies:

|(𝑈 + 𝑢)− ̂︀𝜎𝒰 |
̂︀𝜎𝒰

,
|(𝑉 + 𝑣)− ̂︀𝜎𝒱 |

̂︀𝜎𝒱
6 ∆𝑛−1(3𝜀

2),
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where ∆ℓ(𝛿) = ℓ𝛿/(1− ℓ𝛿). Using 𝑛 instead of 𝑛− 1 for simplicity, we have
⃒⃒
⃒𝛾𝑘[(𝑈 + 𝑢) + 𝛾2(𝑉 + 𝑣)]− 𝜎2

⃒⃒
⃒ 6 ∆𝑛(3𝜀2)𝜎2, (3.62)

and
𝛾𝑘[(𝑈 + 𝑢) + 𝛾2(𝑉 + 𝑣)] 6 (1 + ∆𝑛(3𝜀2))𝜎2. (3.63)

We handle 𝛾𝑘[(𝑈+𝑢)+𝛾2(𝑉 +𝑣)] as follows. For nonzero 𝑈 and 𝑉 , 𝛽2lo 6 𝑈+𝑢, 𝑉 +𝑣 < 𝛽2hi/𝜀
(as we assume 𝑛 6 1/𝜀). If 𝑈 > 𝛽2lo/𝜀

3,

𝛾2(𝑉 + 𝑣) < 𝛾2𝛽2hi/𝜀 = 𝛽2lo/𝜀 6 𝜀
2𝑈 6 𝜀2(1 + 𝜀)(𝑈 + 𝑢).

Similarly, if 𝑉 6 𝛽2lo𝜀
2/𝛾2 = 𝛽2hi𝜀

2,

𝛾2(𝑉 + 𝑣) 6 𝛾2(1 + 𝜀)𝑉 < 𝛽2lo𝜀
2(1 + 𝜀) 6 𝜀2(1 + 𝜀)(𝑈 + 𝑢).

Thus if 𝑈 > 𝛽2lo/𝜀
3 or 𝑉 6 𝛽2hi𝜀

2, the error by dropping the V term is in the order of 𝜀2:

𝛾2(𝑉 + 𝑣)

(𝑈 + 𝑢) + 𝛾2(𝑉 + 𝑣)
6 𝜀2(1 + 𝜀). (3.64)

If 𝑈 < 𝛽2lo/𝜀
3 and 𝑉 > 𝛽2hi𝜀

2, then neither (𝑈 + 𝑢)/𝛾 nor 𝛾(𝑉 + 𝑣) raises exceptions. This is
because 𝑈 < 𝛽2lo/𝜀

3 =⇒ 𝑈/𝛾 < 𝛽hi𝛽lo/𝜀
2 ≈ 1/𝜀. Similarly, 𝑉 > 𝛽2hi𝜀

2 =⇒ 𝛾𝑉 > 𝛽hi𝛽lo𝜀
2 ≈

𝜀3. These discussions are expressed in the function SumOfSquaresBins.

function SumOfSquaresBins(x) // general inputs
Obtain bins 𝒰 , 𝒱 , and integer 𝑘 as discussed
// 𝛾𝑘(̂︀𝜎𝒰 + 𝛾2̂︀𝜎𝒱) approximates

∑︀
𝑗 𝑥

2
𝑗 accurately

// 𝑘 = −2 if 𝒰 is 𝒜, 𝑘 = 0 if 𝒰 is ℬ
// Note that 𝑘 = −2 if and only if bin 𝒜 is nonempty
[𝑈, 𝑢]← SumOfSquaresP(x(𝒰));
[𝑉, 𝑣]← SumOfSquaresP(x(𝒱));
if 𝑈 = 0 // 𝒜 and ℬ are both empty

𝑚← 2, [𝑆, 𝑠]← [𝑉, 𝑣],
return 𝑚 and S = [𝑆, 𝑠].

if 𝑈 > 𝛽2
lo/𝜀

3 or 𝑉 6 𝛽2
hi𝜀

2

𝑚← 𝑘, [𝑆, 𝑠]← [𝑈, 𝑢]

return 𝑚 and S = [𝑆, 𝑠]

if |𝑣| 6 𝛽2
hi𝜀

2, 𝑣 ← 0.
[𝑈, 𝑢]← [𝛾−1𝑈, 𝛾−1𝑢]; [𝑉, 𝑣]← [𝛾𝑉 , 𝛾𝑣]; 𝑚← 𝑘 + 1;
[𝑆, 𝑠]← SumNonNeg([𝑈, 𝑢], [𝑉, 𝑣])

return 𝑚 and S = [𝑆, 𝑠]

end SumOfSquaresBins

Theorem 6. Let SumOfSquaresBins(x) return𝑚 and S = [𝑆, 𝑠], and ̂︀𝜎 = 𝛾−𝑚𝜎 = 𝛾−𝑚
∑︀

𝑗 𝑥
2
𝑗 .

If the length 𝑛 of x satisfies 𝑛+ 3 < ((24 + 𝜀)𝜀)−1, then ∘(
√
𝑆) ∈ ◇(‖̂︀x‖2).

Proof. We group the total errors incurred in computing 𝜎 as 𝛾𝑚̂︀𝜎 into three stages. In Stage
1, the value 𝜎, which is exactly represented by 𝛾 and the three bin-sums (Equation (3.60)),
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is approximated by 𝜎2 = 𝛾𝑘(̂︀𝜎𝒰 + 𝛾2̂︀𝜎𝒱). In Stage 2, the two bin-sums ̂︀𝜎𝒰 and ̂︀𝜎𝒱 are
approximated by the double-FP [𝑈, 𝑢] and [𝑉, 𝑣]. Finally, in Stage 3, 𝛾𝑘((𝑈 +𝑢) +𝛾2(𝑉 + 𝑣)) is
approximated as 𝛾𝑚(𝑆+𝑠) by possibly dropping 𝑣 or both 𝑉 and 𝑣 and the use of SumNonNeg.

Consider the Stage-3 error. There are three possible points of exit in the procedure SumOfSquaresBins.
The first point of exit corresponds to a zero Stage-3 error as there is actually only one nonempty
bin. The seconding point of exit corresponds to Stage-3 error bounded by 𝜀2(1 + 𝜀) as given
by Equation (3.64). If the last point of exit is taken, Stage-3 error consists of one part that is
due to a single application of SumNonNeg, which is bounded by 3𝜀2 (Theorem 2), and one
due to possibly dropping the 𝑣 term, which is bounded by 𝜀2(1 + 𝜀) (Equation (3.64)). Thus
we bound the error in Stage 3 conservatively by 5𝜀2:

⃒⃒
𝛾𝑚(𝑆 + 𝑠)− 𝛾𝑘[(𝑈 + 𝑢) + 𝛾2(𝑉 + 𝑣)]

⃒⃒

𝛾𝑘[(𝑈 + 𝑢) + 𝛾2(𝑉 + 𝑣)]
6 5𝜀2, (3.65)

and
𝛾𝑚(𝑆 + 𝑠) 6 (1 + 5𝜀2) 𝛾𝑘[(𝑈 + 𝑢) + 𝛾2(𝑉 + 𝑣)]. (3.66)

Stage 1 and Stage 2 errors have already been discussed in Equations (3.61) through (3.63).
Putting these together,

|𝛾𝑚(𝑆 + 𝑠)− 𝜎|/𝜎
6

⃒⃒
⃒ 𝛾𝑚(𝑆 + 𝑠)− 𝛾𝑘[(𝑈 + 𝑢) + 𝛾2(𝑉 + 𝑣)]

⃒⃒
⃒ /𝜎 +

⃒⃒
⃒ 𝛾𝑘[(𝑈 + 𝑢) + 𝛾2(𝑉 + 𝑣)]− 𝜎2

⃒⃒
⃒ /𝜎 + |𝜎2 − 𝜎|/𝜎,

6 5𝜀2(1 + ∆𝑛(3𝜀2))(1 + 𝜀2) + ∆𝑛(3𝜀2)(1 + 𝜀2) + 𝜀2,

6 ∆𝑛(3𝜀2) + 7𝜀2.

Consequently,

|(𝑆 + 𝑠)− ̂︀𝜎| 6 (∆𝑛(3𝜀2) + 7𝜀2) ̂︀𝜎,
6 (∆𝑛(3𝜀2) + 9𝜀2) ̂︀𝜎,
6 ∆𝑛+3(3𝜀

2)̂︀𝜎. (3.67)

From Theorems 3 and 4, 𝑛+ 3 < ((24 + 3𝜀)𝜀)−1 implies

|(𝑆 + 𝑠)− ̂︀𝜎| < 𝜀̂︀𝜎/8,

a condition that guarantees, by Theorem 1, that ∘(
√
𝑆) ∈ ◇(

√
̂︀𝜎) = ◇(‖̂︀x‖2).

AccuNrm2 below is the straightforward synthesis of the previous discussions. Theorem 7
that follows is a formal statement that summarizes the technical results of this Section.

function AccuNrm2(x) // general faithful 𝑙2-norm
(𝑚,S)← SumOfSquaresBins(x)
// 𝑚 = −2,−1, 0, 1, 2 and 𝛾𝑚(𝑆 + 𝑠) ≈

∑︀
𝑗 𝑥

2
𝑗

𝑍 ← sqrt(𝑆)
return 𝛾𝑚/2 ⊗ 𝑍 // ∘(𝛾𝑚/2𝑍)

end AccuNrm2
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Theorem 7. The function AccuNrm2(x) returns a faithfully rounded 𝑙2-norm without spuri-
ous exception as long as 𝑛+ 3 < ((24 + 3𝜀)𝜀)−1.

Proof. This is a direct consequence of Theorems 5 and 6.

3.6.6 Numerical Results

result underflows normal result result overflows
NaiveNorm 134.8 46.41 47.14

NetlibNorm 470.0 155.9 161.2

MPFRNorm 2688 1084 1095

FaithfulNorm 288.2 34.54 35.19

Table 3.9 – Computation time per vector element in cycles

vectors with vectors for which vectors with vectors with chosen
normal results results underflow entries around 1.0 “half-ulp” entries

𝑛 = 103 𝑛 = 107 𝑛 = 103 𝑛 = 107 𝑛 = 103 𝑛 = 107 𝑛 = 103 𝑛 = 107

NaiveNorm ∞ ∞ 8.84 · 1012 5.46 · 1010 7.73 861 250 2.50 · 106
NetlibNorm 2.01 524 0.496 0.698 7.58 609 250 2.50 · 106
MPFRNorm 0.494 0.481 0.490 0.498 0.468 0.497 0.0749 0.484

FaithfulNorm 0.620 0.628 0.497 0.499 0.605 0.701 0.0749 0.484

Table 3.10 – Maximum error in ulps for random vectors of various types and lengths 𝑛

We implemented and tested our faithfully rounded, division-free 𝑙2-norm with underflow
and overflow avoidance. We used IEEE754 binary64 as working-precision and we restricted
ourselves to a SIMD environment. Implementation and testing in a threaded environment is
left to future work. In the tables shown, we refer to our implementation by FaithfulNorm.

For our algorithm, we were able to implement it without any branches in the main accu-
mulation loop by the use of instructions predicated with appropriate masks. The resulting
program is branch-free in its inner loop and therefore well suited for pipelined processors.

We compared the implementation of our faithfully rounded 𝑙2-norm with implementations for
other approaches with respect to both accuracy and performance. To do so, we implemented
a naive 𝑙2-norm, called NaiveNorm, that plainly uses working precision for squaring the 𝑥𝑖
and accumulating these squares, without any underflow and overflow avoidance. We further
implemented the algorithm found in netlib [8]; we call this implementation NetlibNorm.
Finally, we implemented another faithfully rounded 𝑙2-norm using the arbitrary precision
library MPFR [86]. This implementation is simply based on an exact accumulation of the
squares 𝑥2𝑖 in an accumulator that provides enough precision. We refer to it under the name
MPFRNorm.

We performed testing on a 4-core Intel Core i7 at 2.67 GHz with 4Gb of RAM. All implemen-
tations are in C, using builtins for access to SIMD instructions. They were compiled using gcc
version 4.8.1 and options -std=c99 -O3 -msse3. Timings are given in cycles per element.

We did accuracy testing for random vectors of various lengths 𝑛 and input types. The testing
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results are resumed in Table 3.10. For each length 𝑛 indicated in the Table 3.10, 500 test runs
were performed.

First, we considered random vectors chosen such that the final 𝑙2-norm result is a normal
floating-point number. Second, we tested the algorithms on random vectors for which the
final result gradually underflows. Third, we performed testing on vectors with inputs around
1.0, i.e. where underflow or overflow avoidance is not necessary. Finally, we constructed input
vectors with “half-ulp” entries 𝑥𝑗 for which the 𝑥2𝑗 are near the midpoint of two consecutive
working-precision floating-point numbers: for such inputs any algorithm using no more than
working precision for the squarings 𝑥2𝑗 will systematically suffer a 0.5 ulp error per element.

Testing shows that both the NaiveNorm and NetlibNorm implementations fail to provide
faithfully rounded results. It establishes also that both our FaithfulNorm as well as the
MPFRNorm algorithm do yield faithfully rounded results.

In cases when the final 𝑙2-norm does not overflow, our algorithm FaithfulNorm returns a
result with an error well below 1ulp, typically 0.7ulp. As expected, the maximum error does
not vary with vector length, whereas it does for the netlib 𝑙2-norm.

Accuracy testing also shows that although the netlib 𝑙2-norm gives acceptable, while not
faithfully rounded, results in general, it may, for particular inputs, suffer a tremendously high
error, as large as about 0.25𝑛 ulp for a vector of length 𝑛.

With respect to performance testing, Table 3.9 reports the performance numbers we observed.
We used vectors of floating-point numbers picked at random in various domains of interest.
We tested for vectors for which the final 𝑙2-norm result gradually underflows, overflows or
stays in the range of normal floating-point numbers. Measurements were done for varying
vector lengths. Given some minimal vector length (a couple of dozen elements), vector length
had no influence on computation time per element.

These performance results clearly speak in favor of our FaithfulNorm implementation. For
cases when the final result is a normal floating-point number, our implementation is about
4.5 times faster than the netlib implementation. As already explained, this is due to several
factors: avoidance of spurious underflow, no use of expensive divisions and an algorithm
that is branch-free in the inner loop.

We shall however mention that our algorithm does have lower performance than the netlib
for cases when the vector length (very) is small – typically less than a dozen elements. In
this case our algorithm has a much higher static overhead due to the pretty complicated final
reduction of the bins and square root computation. In future work, we shall address this
problem with a call-out to a specialized 𝑙2-norm for very small vectors.

3.6.7 Conclusion

In this Section, we presented an efficient algorithm to compute the faithful rounding of
the 𝑙2-norm of a floating-point vector. While our algorithm is very accurate, it is also faster
than previous algorithms like the one of netlib that gives no information about the accuracy
of the result. Moreover, our algorithm avoids spurious overflow and underflow. It is also
suitable for parallel implementations.
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3.7 With and beyond IEEE754: Things Done and Things To Do

In this Chapter, we have analyzed what is needed on the software side to support IEEE754-
2008 and what extensions could be envisioned for future extensions of the Standard. We
have seen that the implementation of the so-called heterogeneous floating-point operations is
possible with a sequence of homogeneous operations, that have already been supported by
the 1985 version of the IEEE754 Standard. We have seen how this support can be integrated
into a support library, such as our libieee754, which is, however, still ongoing work.

We came up with an algorithm that is able to convert arbitrarily long decimal character
sequences to binary floating-point numbers with correct rounding, not requiring dynamic
memory allocation anymore, as did existing approaches. We built upon this technique to
propose and implement a mixed-radix fused-multiply-add operation, taking arguments in a
mix of IEEE754-2008 binary64 and decimal64 formats and returning a correctly rounded result
also in one of these two formats. This work on mixed-radix arithmetic, the inclusion of which
would make the Standard complete in terms of combination of formats in operations, was also
based on preliminary work on mixed-radix comparisons, which we also presented in detail.
We then went on and proposed other extensions of the Standard’s floating-point arithmetic,
in two directions: proposing other, more precise formats for floating-point arithmetic while
still maintaining statically known memory consumption –which arbitrary precision libraries
such as MPFR can clearly not guarantee– and by discussing high level operations on vectors
of floating-point numbers, for instance a faithfully rounded vector 2-norm algorithm.

While these lines are written, the IEEE754-2008 is undergoing revision once again. The
new version of the Standard is expected to be published in 2019. No major changes are
allowed to happen in this new version: the revision committee is bound to keeping to the
same wording, adding no new “shall” statements in this revision cycle 35. It is in the next
revision, scheduled for about 2028, that major changes can be considered. Whatever these
changes to IEEE754 might bring, one point continues to grow more and more important:
the IEEE754 Standard has grown from a 20 pages document published in 1985 [116] to a 70
pages document in 2008 [117] that requires support for 354 operations for just the two most
common ones of its formats, binary32 and binary64. The Standard is however specified with
English only, which has made some discussions for the 2019 revision extremely tedious 36. In
our opinion, we must strive at formalizing the specifications of IEEE754 in a way that allows
for

— automatic generation of a reference implementation out of the formalization, even if
this implementation presented issues with respect to compute performance,

— automatic generation of test vectors for implementations in support libraries such as
our libieee754,

— automatic checking for inconsistencies of the Standard’s specifications, and

— a sustainable way to extend the Standard, putting the burden of the tedious details on
automatic checkers.

As a matter of course, various formalizations of the IEEE754 Standard exist, in particular
the well known Flocq formalization [22]. To our knowledge, these formalizations cannot be

35. see https://development.standards.ieee.org/get-file/P754.pdf?t=86948000003
36. see e.g. the email thread started 2018-12-23 about adding a comma, archived at https://listserv.

ieee.org/cgi-bin/wa?A0=STDS-754

https://development.standards.ieee.org/get-file/P754.pdf?t=86948000003
https://listserv.ieee.org/cgi-bin/wa?A0=STDS-754
https://listserv.ieee.org/cgi-bin/wa?A0=STDS-754
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translated, in an automatic manner, into a reference implementation and, most importantly,
they do not allow for easy changing of certain of the Standard’s characteristics, in an attempt
to “play” with various competing future extensions. We shall work towards that goal with
our future research, too.



CHAPTER 4
Floating-Point Code Generation

Einer staunte darüber, wie leicht er den Weg der
Ewigkeit ging; er raste ihn nämlich abwärts.

Franz Kafka

4.1 Introduction

In the last Chapter 3, we have tried to support and in particular to extend the floating-point
arithmetic environment, as it is defined e.g. by the IEEE754-2008 Standard. We have proposed
several algorithms, e.g. for mixed-radix comparisons and even mixed-radix arithmetical
operations. These extensions, which we consider sensible, might one day be considered for
inclusion into the IEEE754 Standard. Some of these extensions would add quite a number of
different operations to the Standard, even just one mixed-radix FMA for one binary and one
decimal formats adds 24 − 2 = 14 operations. However, all the extensions add nothing but a
finite, pretty small number of operations to the environment.

In contrast, the number of arithmetical operations that can be defined for mathematical
functions 𝑓 : R→ R is naturally infinite, as infinitely many such functions exist. Even for a
finite set of common functions, as they are covered by classical mathematical libraries (libms),
a huge number of implementations exists: these implementation may differ in accuracy,
input and output formats, as well as coverage of the definition domain of the implemented
function. Implementing all these variants, which we shall call flavors, is extremely tedious;
implementing an infinite, open-ended set of mathematical functions is, of course, impossible.

If we want to include mathematical functions in an open-ended manner in a floating-
point compute environment, we must hence pass onto another level, stop thinking about
algorithms that perform arithmetic and continue with algorithms that produce, i.e. compute,
the implementations of the various functions we may consider. In this Chapter, we shall do
so, studying the extension of the floating-point environment with code generation.

As we shall see at the end of this Chapter 4, in Section 4.5, our work on code generation for
mathematical function seamlessly translates to code generation for digital signal processing
filters, to which we dedicate the next Chapter 5.

This Chapter is based on the following articles we published: [32, 146–149, 157, 163]. For
the chapter in this work, we extended this material quite extensively with some currently
unpublished work. Technologically, all this work heavily relies on the Sollya tool [41], which
we continue to develop but chose not to describe in detail in this work. Financewise, an
important part of the work presented here was financed by the ANR project Metalibm.
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Figure 4.1 – The proposed Metalibm tool suite

4.2 Implementation of Mathematical Functions

In this Section 4.2, we give an overview on techniques in the development of which we
have participated. In the subsequent Sections 4.3 and 4.4, we shall detail some aspects of
what we understand by open-ended code generation and of use-cases for code generation for
mathematical functions. In this Section, we both present the piece of software we developed
for open-ended code generation, called metalibm-lutetia 1 and a “competing” software ap-
proach, metalibm-lugdunum, developed by other scientists with a more specific application
scope. Section 4.4.2 however will make it clear that both metalibm-lutetia and metalibm-
lugdunum are part of a single scientific effort and that the initial distinction is nothing but
smoke and mirrors: we shall show how we can leverage metalibm-lutetia to provide input
for metalibm-lugdunum, while also taking profit from metalibm-lugdnunum’s performance
optimization capabilities for metalibm-lutetia. Both pieces of software have become one
single code generator.

4.2.1 Introduction & motivation

Standard mathematical libraries

The standard mathematical library (libm) provides, in a small set of precisions (single
and double precision), a small set of mathematical functions:

— elementary functions [196] such as exponential and logarithm, sine, cosine, tangent and
their inverses, hyperbolic functions and their inverses;

— and other “special” functions useful in various computing contexts, such as the power
function 𝑥𝑦, erf, Γ or the Airy function [4].

Strictly speaking, the libm is specified in the C language standard (currently ISO/IEC
9899:2011). Among the other languages, some (C++, Fortran, Python) use the same library,
and some redefine it in a more or less compatible way. The 2008 revision of the IEEE 754
floating-point (FP) standard [117] has attempted a common standardization. In addition,
language standards also specify elementary functions on complex numbers, but for historical

1. or simply metalibm if the distinction is not needed as the context is clear



4.2 Implementation of Mathematical Functions 127

reasons not in the “mathematical library” section. Also, many operating systems or libraries
offer, for convenience, more functions than strictly required by the libm. In this work we
understand the term “libm” in its widest sense and address all these functions, and more.

A matter of performance

Performance of libm functions is of critical importance, in particular in scientific and
financial computing. For example, profiling the SPICE electronic simulator shows that it
spends most of its time in the evaluation of elementary functions [134]. The same holds for
large-scale simulation and analysis code run at CERN [9, 119, 209].

The problem is that the optimal implementation of each function is dependent on the
technology. Mathematical support is provided by a combination of hardware and software,
and the optimal repartition between hardware and software has evolved with time [206].
For instance, the first 80287 mathematical coprocessor, in 1985, included support for a range
of elementary functions (albeit in microcode) in addition to the basic operations. It was
later found that software could outperform such microcode [65]. For instance, as memory
got cheaper, large tables of precomputed values [90, 239] could be used to speed up the
computation of a function. Furthermore, progress in compiler technology allowed for a deeper
integration of elementary functions software in the overall compilation process [52, 185, 186],
another case for software-based functions. Today, even the relevance of hardware division
and square root is disputed. At the same time, the table-based algorithms of the 90s are being
replaced with high-degree polynomials [52] that behave better in the context of current highly
parallel, memory-constrained multicores.

Limits of the library approach

Productivity of libm development Writing a libm requires fine-tuned instruction selec-
tion and scheduling for performance, and sophisticated FP techniques for accuracy. Re-
optimization of these mutually dependent goals for each new processor is a time-consuming
and error-prone task. Besides, it is desirable that each function comes in several variants
corresponding to a range of constraints on performance (e.g. optimized for throughput or opti-
mized for latency) or accuracy. Some processor and system manufacturers (Intel, AMD, ARM,
NVIDIA, HP, Apple) therefore employ teams of engineers dedicated to libm maintenance.

With more limited manpower, the open-source mathematical libraries (most notably in the
GNU glibc [179] and in Newlib 2) lag behind in performance, in particular as they have to
support a much wider range of processors. However, the most accurate implementations are
found in open-source efforts, with several correctly rounded functions provided by libraries
such as IBM LibUltim [264] (now in the glibc) and CRLibm [64].

Versatility of libm use Another problem is that the libm functions do not meet all the
needs of users. First, the choice is limited. Only a fraction of the functions used by CERN sim-
ulations 3 is offered by the standard libm. The rest is programmed when needed, sometimes
without the expertise of libm developers. This leads to duplicated efforts and, often, poorer
quality (performance- or accuracy-wise) than libm function.

2. https://sourceware.org/newlib/
3. http://project-mathlibs.web.cern.ch/project-mathlibs/mathTable.html

https://sourceware.org/newlib/
http://project-mathlibs.web.cern.ch/project-mathlibs/mathTable.html
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Second, in the specific context of an application, the functions in the libm are often
overkill. A generic library must be specified with the widest and best possible parameters
in mind: argument range is specified “as far as the input and output formats allow” and
accuracy “as accurate as the output format allows”. However, if a programmer knows for
instance that the input to a cosine will remain in a period, and that about three decimal digits
of accuracy will be enough considering the accuracy of the inputs, the libm cosf function is
too accurate (7 decimal digits) on too large a range.

The present Section claims that the solution to both previous issues (productivity, and
versatility) is to automate libm development so that functions can be generated on-demand
for a wider set of contexts. This solution has already proven effective for other classes of
mathematical software, most notably the ATLAS [257] project for linear algebra, and the
FFTW [89] and SPIRAL [212] projects for fast Fourier transforms.

Use cases for generators of mathematical functions

We are currently focusing on two main use cases where we need a libm generator or
metalibm, both illustrated by Figure 4.1.

The first one targets the widest audience of programmers. It is a push-button approach
that will try to generate code on a given domain and for a given precision for an arbitrary
univariate function with continuous derivatives up to some order. The function may be
provided as a mathematical expression, or even as an external library that is used as a black
box. We call this approach the open-ended approach, in the sense that the function that can
be input to the generator is arbitrary – which does not mean that the generator will always
succeed in handling it. Section 4.2.3 will describe how this generator has evolved from simple
polynomial approximations to the generation of more sophisticated evaluations schemes,
including attempts to range reduction. Here, the criterion of success is that the generated
code is better than whatever other approach the programmer would have to use (composition
of libm function, numerical integration if the function is defined by an integral, etc). “Better”
may mean faster, or more accurate, or better behaved in corner cases, etc.

Still, the libm is here to stay, and we also want to address the needs of libm developments.
Although the techniques presented in Section 4.2.3 can eventually be extended to capture all
the functions of C11, it is currently not the case. There is a lot of human expertise that we
are not yet able to automate. In particular, bivariate functions as atan2 or pow, and some
special functions, are currently out of reach. The second use case focuses on assisting people
who have this expertise, not yet on replacing them. It targets a much narrower audience of
programmers, those in charge of providing the actual libm functionality to an operating
system or compiler. Here the criterion of success is that the generated code is of comparable
quality to hand-written code, but obtained much faster.

The chosen approach, reviewed in Section 4.4.2, consists in giving to the libm developer
the keys to the back end. We thus aim at offering a development framework in which the
relevant evaluation schemes may be described. The challenge here is to find a proper balance
between two conflicting goals: 1/ This framework should be able to capture every trick that
libm developers use, otherwise they will not adopt it. 2/ It should nevertheless raise the
level of abstraction, so that a single description generates code for the variety of code flavors
and targets we want to address. And it should be fully scriptable to enable design-space
exploration, but always under full control of the libm developer. Section 4.4.2 reviews a
technical solution that matches these goals.
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This second use case can be viewed as a pragmatic, bottom-up approach, where we embed
existing hand-crafted code in a framework to make it more generic. The first, open-ended use
case is more ambitious, more high-level, and top-down from the most abstract mathematical
description of a function. These two approaches do meet as illustrated on Figure 4.1, and
we do not claim that there is a clear border between them. For instance, the libm developer
working directly with the back end will nevertheless invoke the evaluation scheme generator,
to solve sub-problems, typically after range reduction.

4.2.2 Background on elementary function implementation

In order to understand the challenge of writing a code generator for mathematical func-
tions, it is useful to know how they are implemented manually. The hardware provides FP
additions, multiplications, bit-level manipulations, comparisons, and memory for precom-
puted tables. A generic technique exploiting all this is to approximate a function by tables
and (possibly piecewise) polynomials.

Polynomial approximation

There are many ways [196] to compute an approximation polynomial 𝑝 for a given
function 𝑓 . For our purpose, the best choice is in general a variant [26] of Remez algorithm
that computes the minimax polynomial on a given interval 𝐼 , i.e. the polynomial minimizing
the approximation error

𝜀appr = ‖𝑓 − 𝑝‖𝐼∞ = max
𝑥∈𝐼
|𝑓 − 𝑝|

among all the polynomials of a given degree 𝑑 with FP coefficients of a given format.
For a given 𝑓 and 𝐼 , the larger the degree 𝑑, the better the approximation (the smaller

𝜀appr). When implementing a libm-like mathematical function, we have an upper bound
constraint on 𝜀appr, and we look for the smallest 𝑑 that satisfies this bound.

Argument reduction

When it is not possible to compute a polynomial of a small enough degree, the imple-
mentation domain 𝐼 may be reduced. There are two basic techniques for this: split the
domain into smaller subdomains, or use specific properties of the function. In both cases the
approximation problem is reduced to approximating a (possibly different) function 𝑓𝑟 on a
smaller domain.

Domain splitting The main idea here is to partition 𝐼 into subdomains, so that on each of
them we can find a minimax polynomial approximation of small degree. The splitting can be
uniform, logarithmic [168], or arbitrary [147]. In the two first cases, the polynomial is selected
based on a few bits from the input 𝑥. In the last case, several if-else statements are used
in general to select the right interval index; some techniques to overcome this vectorization
bottleneck through an additional helper-polynomial have been proposed, for instance, with
our approach published in [149]. We shall detail both the splitting process as well as the
index-selection technique below.



130 Chapter 4. Floating-Point Code Generation

Function-specific argument reduction For some elementary functions, specific algorithms
of argument reduction may be applied [196, 239, 240]. They are based on mathematical
properties such as 𝑏𝑥 · 𝑏𝑦 = 𝑏𝑥+𝑦. For example, the exponential function 𝑒𝑥 can be computed
as follows [239]. First, 𝑒𝑥 is rewritten as

𝑒𝑥 = 2𝐸 · 2𝑘−𝐸 · 2𝑥 log2 𝑒−𝑘 .

Given a parameter 𝑤 ∈ N, we may compute 𝑘 = ⌊2𝑤𝑥 log2 𝑒⌋2−𝑤 and𝐸 = ⌊𝑘⌋. Thus, 𝐸 ∈ Z (it
will provide the exponent of the result) and 𝑘 ∈ 2−𝑤Z. We may then compute 𝑟 = 𝑥 log2 𝑒− 𝑘,
a small value. Finally the exponential is rewritten as 𝑒𝑥 = 2𝐸2𝑘−𝐸𝑒𝑟, where the values of
2𝑘−𝐸 may be read in a precomputed table of size 2𝑤 (indexed by 𝑘), while 𝑒𝑟 may be well
approximated by a polynomial, possibly with additional splitting.

Existing libm development tools

A mathematical function generator must build code with guaranteed accuracy. For this, it
can rely on several tools that have already been used in manual libm development.

Sollya [41] is a numerical toolbox for libm developers with a focus on safe FP computa-
tions. In particular, it provides state-of-the-art polynomial approximation [26], safe algorithms
to compute 𝜀approx = ‖𝑓 − 𝑝‖𝐼∞ [43] as well as a scripting language.

Gappa [64] is a formal proof assistant that is able to manage the accumulation of rounding
errors in most of libm codes. Compared to [64], in the present work the Gappa proof scripts
are not written by hand, but generated along with the C code. Interestingly, Gappa is itself a
code generator (it generates Coq or HOL formal proofs).

4.2.3 Approximation of black-box functions

Overview

This Section describes an open-source code generator written in Sollya. It inputs a
parametrization file and produces corresponding C code. The parametrization file includes
the function 𝑓 , its implementation domain 𝐼 , the desired accuracy 𝜀, maximum degree 𝑑𝑚𝑎𝑥
for approximation polynomials, etc.

The function may be specified as a mathematical expression, or an external library. How-
ever, an important feature of the approach is that it doesn’t require an explicit formula for
the function. The proposed tool only accesses the function as a numerical black box. All the
tool requires from this black box is to be able to return (in acceptable time) an arbitrarily
accurate numerical evaluation of the function and its first few derivatives. This way, the
approach works for functions described not only as closed-form expressions, but also as
integrals, inverse functions, etc.

This black-box encapsulation of the function will not prevent the tool to exploit the
function-specific range reductions presented in Section 4.2.2. What follows below shows
that the required mathematical properties can be detected and exploited from a black-box
function.

The tool also supports higher-than-double accuracy, using double-double and triple-
double arithmetic.
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Different levels of approximation schemes

We can structure function generation process in open-ended generator in three levels.

First level (polynomial approximation) This level approximates a function 𝑓 by a polyno-
mial 𝑝 with an error bounded by 𝜀, and generates C code and Gappa proof.

Second level (piece-wise polynomial approximation) This level uses domain splitting
and piecewise polynomial approximation. For the most efficient way of performing this
step, we have developed an algorithmic technique. We presented a code generation-time
algorithm [147] that allows the initial domain to be split in such a way that the number of
resulting sub-intervals is minimized, typically by maximizing the width of the sub-intervals
while keeping the polynomials’ degrees bounded by some a priori value.

This work on optimized domain splitting [147] can be summed up as follows:

— Equal-Width-Splits: The simplest way to perform the domain splitting is to take some
large 𝑘 and split the domain 𝐼 into 𝑘 equal parts. For the mentioned example we may
take 𝑘 = 50; the diagram of the corresponding degrees may be found on Figure 4.2.
This approach works but produces too many subdomains and, as there is head-room
between 𝑑𝑚𝑎𝑥 and the real polynomial degrees, the splitting can be improved.
Instead of a uniform splitting one can use a splitting algorithm that takes into account
the function behavior, for example bisection (Figure 4.3) that gives 23 subdomains. Even
if we reduce the number of subdomains 𝑘 in the uniform splitting, the least number in
the uniform splitting is 45, so bisection procedure saves memory.
However, a naive bisection procedure may be improved: on some of the subdomains
there is still head-room between actual polynomial degree and 𝑑𝑚𝑎𝑥 and, in some cases,
the actual degrees on the adjacent subdomains differ too much, so the diagram of the
degrees is not regular (see Figure 4.4).
We need some theoretical background to perform an optimized splitting that regularizes
the diagram of the polynomial degrees on each of the subdomains as much as it can.

— Minimax polynomials: It was mentioned that the function implementations use ap-
proximations and our code generator computes polynomial approximations. In this
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Figure 4.2 – Naive 𝑘-equal split for asin function. Domains and degrees.



132 Chapter 4. Floating-Point Code Generation

 0

 0.5

 1

 1.5

 2

 0  0
.0

5

 0
.1

 0
.1

5

 0
.2

 0
.2

5

 0
.3

 0
.3

5

 0
.4

 0
.4

5

 0
.5

 0
.5

5

 0
.6

 0
.6

5

 0
.7

 0
.7

5

 0
.8

 0
.8

5

splitting
asin(x)

Figure 4.3 – Bisection splitting for asin function.

Section we consider the theoretical base to find or to estimate the best polynomial
approximation.
There is a lot of methods to compute a polynomial approximation, but the most accurate
result is obtained by computing a minimax polynomial. The minimax polynomial 𝑝 for
a function 𝑓 on a given interval 𝐼 minimizes the approximation error

̃︀𝜀 = ‖𝑓 − 𝑝‖𝐼∞ = max
𝑥∈𝐼
|𝑓 − 𝑝|

among all the polynomials of a given degree 𝑑. The same is applicable for relative
error. Remez algorithm [214] with a small modification is used to find a minimax
polynomial [26]. The classical algorithm produces real coefficients, and rounding them
to floating-point numbers yields to loss of accuracy. The algorithm proposed in [26]
and implemented in Sollya [41] finds a minimax polynomial among all the polynomials
with floating-point coefficients.

— Remez algorithm: Remez algorithm has quadratic convergence to a minimax poly-
nomial when the function 𝑓 is twice differentiable and with additional conditions for
approximation points 𝑥𝑖. We do not explain here the whole algorithm, we just give
an idea. It is an iterative algorithm and first 𝑛 + 2 points 𝑥0, . . . , 𝑥𝑛+1 from [𝑎, 𝑏] has
to be chosen. Then in a loop there are four actions repeated until the needed approx-
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Figure 4.4 – Polynomial degrees for bisection splitting of function asin on domain [0; 0.75]
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imation accuracy is reached. First, an approximation 𝑝 of 𝑓 has to be built on the
chosen 𝑛 + 2 points. Then, to compute the current accuracy, we have to compute
𝜀 = max𝑖=0,...,𝑛+1 |𝑝(𝑥𝑖) − 𝑓(𝑥𝑖)|, we compute or estimate the value of ‖𝑝 − 𝑓‖∞, take
another set of 𝑛+ 2 points and repeat the loop. On the first step, Chebyshev nodes are
often chosen as the set of 𝑛+ 2 points:

𝑥𝑖 =
𝑎+ 𝑏

2
+
𝑏− 𝑎

2
cos

(︂
(𝑛+ 1− 𝑖)𝜋

𝑛+ 1

)︂
, 𝑖 = 0, . . . , 𝑛+ 1.

It is an expensive algorithm, we have to perform a lot of function evaluations, compute
infinite norms and make comparisons. The infinite norm is computed with the algorithm
from [40]. For the example of asin Remez approximation procedure makes about 9000
function evaluations for each of the subdomains.

— Theorem of de la Vallée-Poussin However, to know error bounds for the best polyno-
mial approximation, it is not always mandatory to compute this approximation itself.
We may skip several computation steps estimating the bounds for the approximation
error as it will be shown later.

Theorem 8 (of de la Vallée-Poussin). Let be 𝑓 a continuous function 𝑓 ∈ 𝐶[𝑎,𝑏], 𝑝 its
approximation polynomial on 𝑛+ 2 points 𝑥0 < 𝑥1 < · · · < 𝑥𝑛+1 from [𝑎, 𝑏] such that
the error 𝑓 − 𝑝 has a local extremum and its sign alternates between two successive
points 𝑥𝑖, then the optimal error 𝜇 verifies

min
𝑖=0,1...,𝑛+1

|𝑓(𝑥𝑖)− 𝑝(𝑥𝑖)| 6 𝜇 6 max
𝑖=0,1...,𝑛+1

|𝑓(𝑥𝑖)− 𝑝(𝑥𝑖)|.

The mentioned approximation points 𝑥𝑖 for polynomial 𝑝may be chosen as Chebyshev’s
nodes [37]: from the alternation Chebyshev theorem, in this case the approximation
error oscillates perfectly between its extrema at least 𝑛 + 2 times. Theorem of de la
Vallée-Poussin takes a polynomial 𝑝 with an error oscillating 𝑛 + 2 times and claims
that the quality of the approximation 𝑝 is related to the quality of the oscillations [38].
This theorem allows us to check the quality of the approximation: polynomial 𝑝 is
considered as the best approximation if 𝜀 and ‖𝑓 − 𝑝‖∞ are sufficiently close.

1 Procedure checkIfSufficientDegree(𝑓 , 𝐼 , 𝑛, 𝜀):
Input : function 𝑓 , domain 𝐼 = [𝑎; 𝑏], degree 𝑛, target accuracy 𝜀
Output : true in the case of success, false in the case of fail
𝑥𝑖 ← 𝑎+𝑏

2 + 𝑏−𝑎
2 cos

(︁
(𝑛+1−𝑖)𝜋
𝑛+1

)︁
, 𝑖 = 0, . . . , 𝑛+ 1;

𝑝←interpolate(𝑓, 𝑥𝑖);
𝑚← min𝑥𝑖 |𝑓(𝑥𝑖)− 𝑝(𝑥𝑖)| ;
𝑀 ← max𝑥𝑖 |𝑓(𝑥𝑖)− 𝑝(𝑥𝑖)| ;
if 𝜀 >𝑀 then 𝑟 ← true;
if 𝜀 6 𝑚 then 𝑟 ← false;
if 𝜀 > 𝑚 ∧ 𝜀 < 𝑀 then

𝑝←remez(𝑓, 𝐼, 𝑛, 𝜀);
𝛿 ←supnorm(𝑓 − 𝑝, 𝐼);
𝑟 ← 𝛿 6 𝜀 ;

end
return 𝑟;
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As Remez is an iterative algorithm, on each step we may check where the current
approximation error is situated relatively to the optimal error. This theorem allows to
write a procedure checkIfSufficientDegree that checks if it is possible to compute
a polynomial of degree 𝑑 that approximates a function 𝑓 on an interval 𝐼 with error
𝜀. You may find a pseudo-code for the mentioned procedure below. It starts with
computation of Chebyshev approximation polynomial of degree 𝑑𝑚𝑎𝑥 and then it
obtains the bounds for optimal approximation (from de la Vallée-Poussin theorem).
When the target accuracy is larger than the upper bound for the approximation error,
the method returns true, when the target accuracy is lower than the lower bound, it
returns false. In the case when the target accuracy is between the bounds, it is not clear
and a Remez iteration is needed.

The procedure checkIfSufficientDegree is useful to compute domain splitting
based on bisection procedure.

— Towards a new splitting algorithm: The upper-mentioned theory gives a base for a
domain splitting algorithm. We know how to solve a non-standard approximation
problem: for a given function 𝐹 on an interval 𝐼 compute a polynomial of an unknown
degree 𝑑 that approximates 𝑓 on 𝐼 with an error 𝜀, 𝜀 6 ̃︀𝜀. We may use la Vallée-Poussin
theorem to compute the splitting. We will need to compute a polynomial approximation
𝑝 in Chebyshev nodes and check the infinite norm of 𝑝 against target error. This can be
done with checkIfSufficientDegree procedure.

The first improvement of the linear split on 𝑘 equal subdomains is bisection. There
is a set of parameters for the algorithm: a function 𝑓 , needed approximation error ̃︀𝜀,
minimal width of the subdomain 𝑤𝑚𝑖𝑛, maximum bound for the polynomial degree
𝑑𝑚𝑎𝑥 and the domain 𝐼 . The algorithm returns a list of split points.

So, we start to check if it is possible to approximate the function 𝑓 on the whole
domain by a minimax polynomial of degree 𝑑𝑚𝑎𝑥 with the error bounded by ̃︀𝜀. If
checkIfSufficientDegree returns true, then the splitting is computed and the
empty list has to be returned. If the checking procedure returned false, we have
to split the interval 𝐼 into two equal non-overlapping parts 𝐼𝑙𝑒𝑓𝑡 and 𝐼𝑟𝑖𝑔ℎ𝑡 and to
repeat it recursively for the left part. We continue to bisect the current interval until
checkIfSufficientDegree returns true for all the parameters and current interval
𝐼𝑙𝑒𝑓𝑡. In this case we append 𝑚 = sup(𝐼𝑙𝑒𝑓𝑡) to the list of split points and repeat the
procedure for the rest of the initial interval, i.e. [𝑚, 𝑏]. The algorithm returns error, if the
size of the currently checked interval is less than 𝑤𝑚𝑖𝑛.

Here is the pseudo-code for the bisection splitting. It uses previously explained proce-
dure checkIfSufficientDegree for an interval, if it returns false, it splits interval
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Figure 4.5 – Polynomial degrees for improved bisection splitting for asin example.

into two equal parts. The procedure is repeated recursively.

1 Procedure computeOptimizedSplitting(𝑓 , 𝐼 , 𝑑, 𝜀):
Input : function 𝑓 , domain 𝐼 = [𝑎; 𝑏], max. degree 𝑑, target accuracy 𝜀
Output : list ℓ of points in 𝐼 where domain needs to be split
if checkIfSufficientDegree(𝑓 , 𝐼 , 𝑑, 𝜀) then return ℓ = [ ];
𝑚← 𝑏;
while ¬ checkIfSufficientDegree(𝑓 , [𝑎;𝑚], 𝑑, 𝜀) do 𝑚← (𝑎+𝑚)/2 ;
𝐽 ← [𝑚; 𝑏];
ℓ←prepend(𝑚, computeOptimizedSplitting(𝑓 , 𝐽 , 𝑑, 𝜀));
return ℓ;

Thus, the algorithm returns only splitting points inside the initial interval 𝐼 , the resulting
list does not contain its borders 𝑎, 𝑏.
For the asin example bisection splits the domain into 23 subdomains and the degrees
diagram is on the Figure 4.4.

— Improved bisection: The bisection produces less intervals than the naive linear ap-
proach, but it is still not optimal: some intervals may be merged together to reduce
the headroom between 𝑑𝑚𝑎𝑥 and actual polynomial degree. The improved version of
splitting is based on the bisection, but then, as soon as we find a suitable interval on the
left, we try to move its right border on some 𝛿. And then we repeat for the rest of the
initial interval.
This algorithm contains two procedures: bisection and enlarging. While the algorithm
computeOptimizedSplitting simply splits the interval in its middle through the
assignment 𝐽 ← [𝑚; 𝑏];, the improved bisection algorithm uses a subroutine call at this
point to find the locally widest interval.
For the asin example, this improved bisection method produces 21 subdomains; Fig-
ure 4.5 shows the corresponding polynomial degrees diagram. The degrees on 20 of the
intervals are equal to 8, and only on the last small interval the obtained degree is 6.

— Left-to-right and right-to-left directions: As on each step of the algorithm we try to
enlarge the leftmost suitable interval, we may have a situation when the degrees on
the first intervals are close to 𝑑𝑚𝑎𝑥, but on the last one (or even several last intervals)
corresponding polynomial degree is small. A similar algorithm may be obtained, when
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instead of the leftmost suitable intervals we take the rightmost suitable intervals. In the
first case we compute the split points from left to right, in the second case from right
to left. For right-to-left direction we enlarge the intervals from bisection procedure by
moving their left borders down. In this case we may have low degrees on several first
intervals, while, on the other intervals, the degree is close to 𝑑𝑚𝑎𝑥.

This approach of computing optimized splittings into sub-domains is implemented inside
the open-ended function code generator metalibm-lutetia. More detail can be found in [149].

Third level (exploiting algebraic properties) This level attempts to detect mathematical
properties, and uses them to generate argument reduction code. Properties that are currently
detected by the tool include

𝑓(𝑥+ 𝑦) = 𝑓(𝑥)𝑓(𝑦)

𝑓(𝑥+ 𝐶) = 𝑓(𝑥)

𝑓(𝑥) + 𝑓(𝑦) = 𝑓(𝑥𝑦)

𝑓(𝑥) = 𝑓(−𝑥); 𝑓(𝑥) = −𝑓(𝑥).

They respectively correspond to exponential functions 𝑏𝑥+𝑦 = 𝑏𝑥𝑏𝑦, periodic functions, e.g.
sin(𝑥 + 2𝜋𝑘) = sin(𝑥), logarithms log𝑏(𝑥) + log𝑏(𝑦) = log𝑏(𝑥𝑦) and symmetrical functions
(both even and odd). When such a property is detected, the tool uses the corresponding
argument reduction. Then it needs an approximation scheme in the reduced domain. For
this, it performs a recursive call to the first or second level.

As the tool only accesses the function as a black box, it is unable to prove that the property
is actually true. However, all it needs is to ensure that it is true up to some accuracy (the
accuracy needed for the range reduction to work). This can be done purely numerically.

As an example, let us show how to detect the property 𝑓(𝑥 + 𝑦) = 𝑓(𝑥)𝑓(𝑦), which
corresponds to a family of exponential functions 𝑏𝑥+𝑦 = 𝑏𝑥𝑏𝑦 for some unknown base 𝑏 ∈ R.

First, two different points 𝑥 and 𝑦 are chosen in 𝐼 , and the tool checks if there exists |𝜀| < 𝜀
such that 𝑓(𝑥+ 𝑦) = 𝑓(𝑥)𝑓(𝑦)(1 + 𝜀). If not, the property is not true. If yes, the tool deduces
a candidate 𝑏 = exp

(︁
ln(𝑓(𝑥))

𝑥

)︁
for some random 𝑥 ∈ 𝐼 . Only in this case it checks that the

property is true up to the required accuracy, by computing

̃︀𝜀 =

⃦⃦
⃦⃦ 𝑏𝑥

𝑓(𝑥)
− 1

⃦⃦
⃦⃦
𝐼

∞

and checking if ̃︀𝜀 6 𝜀.
Other properties can be detected in the same way. For instance, periodic functions may be

detected with a numerical zero search for 𝐶 such that 𝑓(𝑥0 + 𝐶)− 𝑓(𝑥0) = 0, followed by a
computation of ‖𝑓(𝑥+ 𝐶)− 𝑓(𝑥)‖𝐼∞.

However, handling the error bound ̃︀𝜀 requires some analysis for certain function proper-
ties.
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Figure 4.6 – Piecewise-constant mapping function 𝑀(𝑥)

Reconstruction

The final step in mathematical functions implementation is reconstruction, i.e. the se-
quence of operators (or just a formula) needed to be executed to evaluate the function at some
point 𝑥 from the initial domain 𝐼 . The reconstruction may be tricky if the generation was done
on the second level, and the produced code has to be vectorizable. To make the reconstruction
vectorizable, some mapping function that returns an index of the corresponding interval has
to be exhibited [149].

The approach we proposed to replace branches by polynomial evaluation when deter-
mining the index of a function’s input value 𝑥 in the sub-domains [149] globally follows the
following ideas:

— Classical reconstruction: Classically, when argument reduction has resulted to simple
domain splitting, possibly optimized with the method described above [147], the cor-
responding reconstruction step contains several if-else statements to pick the right
approximating polynomial for the function evaluation. To make the code vectorizable,
branching during the computations of the finite function values has to be avoided.
Consider here that the domain splitting procedure returns a set of non-overlapping
intervals {𝐼𝑘}𝑁𝑘=0, such that 𝐼𝑘 = [𝑎𝑘, 𝑎𝑘+1], so the adjacent intervals have the only point
in the intersection 𝐼𝑘 ∩ 𝐼𝑘+1 = {𝑎𝑘+1}. The initial implementation domain is [𝑎, 𝑏] =

𝐼 =
⋃︀𝑁
𝑘=0 𝐼𝑘. Then, to compute 𝑓(𝑥) we execute if-else statements to determine

subdomain’s index 𝑘, where 𝑥 ∈ 𝐼𝑘.
The code may be written without branches with the use of a mapping function that
returns subdomain’s index for each input value from 𝐼 :

𝑀(𝑥) = 𝑘, 𝑥 ∈ 𝐼𝑘, 𝑘 = 0, 1, . . . , 𝑁.

The function 𝑀(𝑥) is a piecewise-constant function, as it is shown on Figure 4.6.
For a naive domain splitting, when 𝐼 is divided into 𝑁 equal intervals we may use a
linear function 𝑚(𝑥) = 𝑁

𝑏−𝑎(𝑥− 𝑎), and then the mapping function is easily computed
as 𝑀(𝑥) = ⌊𝑚(𝑥)⌋. However, this splitting is not optimal, and a more sophisticated
splitting algorithm is used instead [147].

— How to compute polynomial mapping: For a non-regular domain splitting as the one
that is currently used in Metalibm the mapping function may be computed with an
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Figure 4.7 – Mapping function and a corresponding polynomial 𝑝(𝑥)
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Figure 4.8 – Admissible ranges for the polynomial values.

interpolation polynomial 𝑝(𝑥). This polynomial passes through the points (𝑎𝑘, 𝑘), 𝑘 =
0, . . . , 𝑁 , where {𝑎𝑘} are the splitpoints. Once the polynomial coefficients are computed,
the mapping function can be computed as

𝑀(𝑥) = ⌊𝑝(𝑥)⌋, 𝑥 ∈ 𝐼.

Thereby, we obtain some conditions for this polynomial. Such a polynomial is shown
on Figure 4.7.

— Conditions for the polynomial:
As the mapping function stays constant on a subdomain 𝐼𝑘, the admissible range for
the polynomial values on this subdomain is [𝑘, 𝑘 + 1). Thus, the task is to compute an
interpolation polynomial 𝑝 on the points (𝑎𝑘, 𝑘), 𝑘 = 0, . . . , 𝑁 for which the following
holds:

𝑝(𝑥) ∈ [𝑘, 𝑘 + 1), 𝑥 ∈ [𝑎𝑘, 𝑎𝑘+1]. (4.1)

A suitable polynomial 𝑝 as well as the conditions (4.1) are shown on Figure 4.8. As
the classical interpolation procedure guarantees only that 𝑝(𝑎𝑘) = 𝑘 by construction of
the polynomial, conditions (4.1) have to be checked a posteriori. This can be done in
Sollya [41] with the evaluation of this polynomial 𝑝(𝑥) over an interval [𝑎𝑘, 𝑎𝑘+1].
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Figure 4.9 – Modified floating-point conditions for polynomial.

There is a certain ambiguity for the values of mapping function in the splitpoints {𝑎𝑘}.
In splitpoints the two polynomials corresponding to the adjacent subdomains have the
same value 𝑝𝑘−1(𝑎𝑘) = 𝑝𝑘(𝑎𝑘) = 𝑘. To get the index of the approximating polynomial
at the point 𝑎𝑘, we may admit 𝑀(𝑎𝑘) = 𝑘 − 1 or 𝑀(𝑎𝑘) = 𝑘. Only in the “corner”
splitpoints 𝑎0 and 𝑎𝑁 there is no ambiguity for the values of mapping function.
As all the computations are performed in floating-point numbers, the interpolation
conditions 𝑝(𝑎𝑘) = 𝑘 are no longer satisfied because of roundings. Taking into account
the ambiguity of the mapping function in the splitpoints, conditions (4.1) have to be
modified a little. As the set of floating-point numbers is discrete, for a given floating-
point number 𝑎, it is possible to find its predecessor pred(𝑎) and successor succ(𝑎). This
means that the admissible ranges for polynomial values from (4.1) should be narrowed
to the following:

𝑝(𝑥) ∈ [𝑘, 𝑘 + 1), where 𝑥 ∈ [succ(𝑎𝑘),pred(𝑎𝑘+1)] ⊂ 𝐼𝑘, 0 6 𝑘 6 𝑁 − 1. (4.2)

The conditions for the splitpoints should be added then.

𝑝(𝑥) ∈ [𝑘 − 1, 𝑘 + 1), where 𝑥 = 𝑎𝑘, 𝑘 = 1, . . . , 𝑁 − 1. (4.3)

The modified conditions for the polynomial ranges are shown on Figure 4.9 with gray
rectangles, the range of polynomial values in split points is illustrated with a red line.

— The choice of the interpolation points:
The interpolation points may be chosen in several different ways. With the set of
splitpoints {𝑎𝑘}𝑁𝑘=0 we compute four different polynomials. First, we may use “inner”
polynomial with 𝑁 − 1 points {𝑎𝑘}𝑁−1

𝑘=1 . Then we can compute “left” and “right” poly-
nomial with 𝑁 points {𝑎𝑘}𝑁−1

𝑘=0 or {𝑎𝑘}𝑁𝑘=1. And the last variant here is to compute a
polynomial of degree𝑁 using all𝑁+1 splitpoints. When a posteriori conditions are not
verified for all the four polynomials (4.2) through (4.3), we may add some interpolation
points. However, as the addition of new interpolation points raises the degree of the
polynomial according to Runge’s phenomenon, it will oscillate in the ends, which means
that the conditions (4.2) through (4.3) are rarely verified.
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— Towards a priori conditions:
As the conditions for the polynomial values are checked only a posteriori, there is no
guarantee that the polynomial for mapping function exists for arbitrary splitting. Con-
trariwise, our method finds it only for few splittings. When there are some points where
the polynomial exceeds the admissible range, we can add them to the interpolation
points, recompute the polynomial 𝑝(𝑥) and recheck the conditions (4.2) through (4.3)).
However, due to Runge’s phenomenon the polynomial begins to oscillate [37] and the
conditions are not verified. The choice of the interpolation points for this polynomial
remains an open problem.
However, the ranges for the polynomial values are still checked a posteriori and there
are some values out of the admissible range. These conditions may be taken into account
if we operate intervals instead of points. The classical interpolation problem is a system
of linear equations with Vandermonde’s matrix:

⎛
⎜⎜⎜⎜⎝

1 𝑥0 · · · 𝑥𝑁1
1 𝑥1 · · · 𝑥𝑁1
...

...
. . .

...
1 𝑥𝑁 · · · 𝑥𝑁𝑁

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

𝑐0

𝑐1
...
𝑐𝑁

⎞
⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎝

𝑦0

𝑦1
...
𝑦𝑁

⎞
⎟⎟⎟⎟⎠
, (4.4)

where (𝑥𝑖, 𝑦𝑖), 𝑖 = 0, . . . , 𝑁 are the interpolation points and 𝑐0, . . . , 𝑐𝑁 are the unknown
polynomial coefficients. Computing the unknown coefficients means solving the system
(4.4). When we use intervals instead of points to compute the interpolation polynomial,
we take subdomains on abscissas and intervals [𝑘,pred(𝑘 + 1)] on ordinates. Then, the
task is almost the same: system of linear equations with unknown coefficients 𝑐0, . . . , 𝑐𝑁 .
Except of the numbers 𝑥𝑖, 𝑦𝑖 we operate intervals in system (4.5).

⎛
⎜⎜⎜⎜⎝

1 x0 · · · xN
1

1 x1 · · · xN
1

...
...

. . .
...

1 xN · · · xN
N

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

𝑐0

𝑐1
...
𝑐𝑁

⎞
⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎝

y0

y1

...
yN

⎞
⎟⎟⎟⎟⎠

(4.5)

The difference from the classical solution of the interval system is that we need only
one vector (𝑐0, 𝑐1, . . . , 𝑐𝑁 ), but not the set of all suitable coefficients. We may find the
tolerance solution set of the system (4.5) in polynomial time, but it can be empty. In this
case the united solution set may be found, but this problem is NP-hard [235] . Anyway,
we have connected coefficients in the system matrix, and the existing methods do not
take into account this type of connection. We leave this transition to a priori conditions
for the future work.

Several examples of code generation

The two first examples correspond to 𝑓 = exp with the target accuracy 𝜀 = 2−53, polyno-
mial degree is bounded by 𝑑𝑚𝑎𝑥 = 9. Then we test a toy composite function and a sigmoid
function as used in neural networks.

1) For 𝑓 = exp on the small domain 𝐼 = [0, 0.3], the first level is enough. The generated
code only consists of polynomial coefficients and polynomial evaluation function. Function
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Figure 4.10 – Logarithmic relative error of generated code on domain [−2−20;−2−30] for
sin(cos(𝑥/3)− 1)

generator does not handle special cases for the moment (infinities, NaNs, overflows, etc.), so
for larger domains this filtering has to be added manually. This is addressed in Section 4.4.2.
This function flavor is about 1.5 times faster than the standard exp function from the glibc
libm.

2) For exponential flavors on larger domains, the table-driven argument reduction men-
tioned in Section 4.2.2 is used. We enlarge the domain from the previous example to 𝐼 = [0, 5]
and set 𝑤 = 4 for table (the table size is 2𝑤).

On the third level, the family of exponential functions is detected. The domain is reduced
to [− log(2)/2𝑤+1, log(2)/2𝑤+1], where the first level generates polynomial code. The obtained
code for this flavor executes in 10 to 60 machine cycles, with most inputs, requiring less than
25 cycles. For comparison, libm code requires 15 to 35 cycles.

3) For the composite function 𝑓(𝑥) = sin(cos(𝑥/3)− 1) on the domain 𝐼 = [−1, 1] with 48
bits of accuracy, using the standard libm will involve two function calls (both with special
cases handling) and a division. In the generated code, the composite function is directly
approximated by polynomials. Even though the target error is less than the mantissa length
for double precision, the generated code wins both in accuracy and performance. Due to
cancellation at zero, the error for composed libm functions explodes (Figure 4.11), while the
error of generated function stays bounded (Figure 4.10). Execution of the generated code
takes between 8 and 470 machine cycles, while execution of the libm’s analog of this flavor
takes more than 150 cycles and may reach 650 cycles in the worst case.

4) Another example is the sigmoid function 𝑓(𝑥) = 1
1+𝑒−𝑥 on the domain 𝐼 = [−2; 2]

with 52 correct bits. No algebraic property is detected, so the generation is done on the
second level. The generated code and the libm’s code are both of comparable accuracy and
performance: execution takes between 25 and 250 cycles with most cases done within 50
cycles. The polynomial degree for the generation is bounded by 𝑑𝑚𝑎𝑥 = 9, the domain was
split to 22 subintervals.

Open-ended code generation: wrap up and outlook

As shown with the previous examples, and with its own 10300 lines of code, open-ended
code generation has reached a certain level of maturity. It is able to quickly generate code for
functions defined by various means, including black-box definitions. The produced codes do
not yet reach the performance which manual implementation would eventually reach but
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Figure 4.11 – Logarithmic relative error of the libm call on domain [−2−20;−2−30] for
sin(cos(𝑥/3)− 1)

they are available quickly, at reduced cost. Final accuracy is bounded by construction and in
the case of composite functions, it is better than for plain libm function composition.

However, the current prototype has some limitations that we intend to lift. First of all,
unless an argument reduction can be detected, code generation is currently limited to small
domains. Domain splitting can offset this limitation, but only up to some point. For instance,
splitting domains like [1;∞] or just [1; 21024] is hopeless. A possible way to address this
limitation is to transform 𝑓 over a large domain 𝐼 = [𝑎; 𝑏], 𝑎 > 1 into 𝑓(1/𝑥) over [1/𝑏; 1/𝑎].
However, black-box static error analysis for this case remains to be studied.

Another room for improvement is the back end code generation, currently limited to
generic C code. This may be addressed by the framework that we present now.

4.2.4 A code generation framework assisting libm developers

We now describe a development framework that enables libm developers to address the
productivity issue. This framework could be used to implement the previous techniques and
manage the back end code generation. However, we mostly present it from the point of view
of a developer of classical libm. As already mentioned, there is no clear boundary between
the two approaches depicted on Figure 4.1.

Due to space restrictions, we essentially present and motivate various technical choices. A
reader interested in more details is invited to look at (and experiment with) the open-source
code available from www.metalibm.org.

General overview

All the framework is implemented in Python, a language chosen to ensure that the
framework is fully scriptable. More importantly, an evaluation scheme is itself described in
Python. Technically, one first defines a Python variable as being the output of the generated
code, then all computations that eventually affect this variable are considered as belonging to
the evaluation scheme.

A similar mechanism enables the designer to embed, in the same Python code, the analysis
and proof of numerical properties of the evaluation scheme. First, intervals may be described
and manipulated directly in Python using interval arithmetic. This is useful to script range
and error analysis. The fact that interval computations are scripted in Python is a non-

www.metalibm.org
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Figure 4.12 – Zoom on the back end C code generator

automatic, but practical way out of the correlation issues that plague naive interval arithmetic.
Second, pure mathematical expression may also be described, still in the same classical Python
syntax. They can be used for describing what the code is supposed to compute, so that Sollya
may compute 𝜀approx, and Gappa may bound the accumulation of rounding errors [64].

This may seem a lot of overloading for the Python syntax. Below all this, we still also keep
standard Python to script the code generation, in several steps (Figure 4.12).

First, the execution of the Python code describing the evaluation scheme builds a corre-
sponding abstract syntax tree (AST). Variables and operations in the AST may be annotated
with all sorts of information, either explicitly by the programmer, or automatically by the
framework. Examples of annotations include: desired precision, intervals for ranges and er-
rors, probability of taking a branch, exactness of operations (no rounding errors), dependency
to FP environment (rounding mode, exception visibility).

Then, the AST may be manipulated from within the same Python code. The framework
provides many optimization steps for this. Some of them are similar to those implemented
in generic compilers (for instance if-conversion or instruction selection). Some others are
specific to the libm context (for instance labeling the tree with range and error intervals,
or reparenthesizing of arithmetic expressions to express parallelism, similarly to the CGPE
approach [194]). It is also possible to write function-specific optimization steps.

An important feature is that these optimization steps are invoked from the same Python
code where the evaluation scheme is described. The libm designer may therefore choose
to apply them or not (depending on the context), and decide on which part of the AST an
optimization step is applied. This provides much finer control than the optimization switches
of a compiler, while remaining easy to manage because elementary function codes are small.
It is therefore a practical way out of the issue of conflicting compiler optimizations.

Among these optimization steps, instruction selection transforms the AST into a form
closer to the generated code. It is dependent on the target hardware, as depicted in next
section. The generated C is often very close to assembly: each line of C roughly matches
one machine instruction, sometimes explicitly thanks to intrinsics if the target decided so.
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Python generic code:

k = NearestInteger(unround_k, precision = self.precision)

NearestInteger is a method of the generic Processor class, and generates the following code for binary32:

k = rintf(unround_k);

When overloaded in the Kalray processor class, it generates the following code:

t = __builtin_k1_fixed(_K1_FPU_NEAREST_EVEN, unround_k, 0);
k = __builtin_k1_float(_K1_FPU_NEAREST_EVEN, t, 0);

The same Python also generates binary64 versions, here for for x86 with SSE2:

t = _mm_set_sd(unround_k);
t1 = _mm_round_sd(t, t, _MM_FROUND_TO_NEAREST_INT);
k = _mm_cvtsd_f64(t1);

Figure 4.13 – Examples of processor-specific code generation

However we still leave a lot to the compiler: the detailed scheduling of the instructions, the
register allocation, and the autovectorization.

It is in general a challenge to avoid reinventing the compiler. We want to rely on existing
compilers for what they are good at. As compilers improve, some of the technical choices
made here will be reevaluated.

The processor class hierarchy

Modern processors, even within ISA families such as IA32 or ARM, exhibit a lot of variety
in their instruction sets. They differ in the basic arithmetic support (presence or not of a
fused multiply-and-add, of a divide instruction, of various int/float conversion instructions).
They also differ in the model of parallelism and in the capabilities of the hardware to extract
this parallelism (some are VLIW, some are superscalar, some support vector parallelism; all
are pipelined but the depth and width of the pipeline vary greatly). Finally, they are all
increasingly memory-starved, and may offer different strategies to address this issue (caches,
memory prefetching, memory access coalescing, etc). Generating optimized elementary
function code for such a variety of processors is very challenging. Actually, we want to
optimize the code not for a processor, but for a context that includes the processor. For
instance, for the same processor, throughput-oriented or latency-oriented code may be very
different.

In order to do so, for each processor, we define a class that provides information to
optimization steps, as well as code generation services. As recent processors tend to inherit
the instruction set of their ancestors, the inheritance mechanism of object-oriented languages
works well for overriding old techniques with newer ones when new instructions appear.

The current prototype generates code for four targets from two very different families.
The first is a recent x86 processor, an out-of-order superscalar architecture. We consider an
SSE2-enabled version (using the modern SIMD FPU that complements the legacy x87 unit),
and a more recent AVX2-enabled one (adding hardware support for the FMA). The second
family is the K1 core, developed by Kalray for its MPPA manycore processor. It implements a
5-issue VLIW in-order architecture, and comes in two versions: the first, K1A, offers a mixed
single precision / double precision FP unit. The second version, K1B, adds binary64 FMA
capability and two-way SIMD capabilities for binary32.

There is also a default processor target where no assumption is made on the hardware



4.2 Implementation of Mathematical Functions 145

support, except for IEEE-754 compliance. Support for the ARM family will be added soon.
Figure 4.13 shows one example of code generation service provided by the processor class:

the rounding of a FP number to an int.

Some optimizations performed on the abstract syntax tree

Instruction selection Instruction selection is a code generation service provided by the
processor class. We could, in principle, delegate it to the compiler that does it well. To
illustrate why we want to keep control on it, consider a simple example: fusing one addition
and one multiplication into an FMA. This is desirable most of the time, as it improves
both accuracy and latency. However, the very fact that it is more accurate impacts the
error computation. The code generator therefore needs to know what FMA fusion will be
performed. The impact may be deep.

Consider for instance the classical Cody and Waite argument reduction [196], that com-
putes 𝑟 = (𝑥− 𝑘𝑐ℎ)− 𝑘𝑐𝑙 where 𝑘 is an integer chosen such that the first subtraction cancels.
Without an FMA, we need to keep 𝑘 a small integer, on a few bits, and define 𝑐ℎ as having so
many trailing zeroes in its mantissa, so that 𝑘𝑐ℎ may be computed exactly. The subtraction
is then Sterbenz-exact. With an FMA, this computation remains exact for much larger 𝑘 (as
long as 𝑘 may be represented exactly as FP), and there is no need for zero bits in 𝑐ℎ, which
provides more accuracy in 𝑐ℎ + 𝑐𝑙. Here the FMA has an impact not only on the accuracy of
the result, but on the relevance domain of the range reduction.

Table 4.1 – Speedups obtained with respect to default libm.
processor function speedup default libm

K1a

expf (binary32) 4.0

newlib

logf (binary32) 2.7
exp (binary64) 5.8
log (binary64) 5.8

K1b

expf (binary32) 4.0
logf (binary32) 2.7
exp (binary64) 1.8
log (binary64) 2.2

core i7, SSE2

expf (binary32) 1.7

glibc

logf (binary32) 1.02
exp (binary64) 1.7
log (binary64) 1.6

core i7, AVX2

expf (binary32) 1.1
logf (binary32) 0.96
exp (binary64) 1.9
log (binary64) 1.6

All the code variants tested in this table are C11-compliant and optimized for latency. They
are generated from the same two files exp.py and log.py.
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Similar arguments apply to other instruction selection situations, such as float/int conver-
sions.

Another interesting example is the fast reciprocal approximation. This instruction, offered
by some processors to bootstrap FMA-based division, can also be used in an efficient range
reduction for the logarithm [52]. In this case, it must be emulated on processors that do not
offer it.

In the near future, we intend to explore using SIMD parallelism to speed up polynomial
evaluation. This requires specific instruction to move data within a SIMD vector that are
extremely processor-dependent, and actually constrain the evaluation scheme. This is another
case for embedding instruction selection in our code generator framework.

Control path generation and vectorization Modern compilers are more and more able to
autovectorize long, computationally intensive loops. When there are libm calls in such loops,
these functions must be vectorized themselves.

One approach is to define vector types (which may be exposed to the programmer, but
also inferred by the compiler), and to provide vector versions of each libm function. This
solution is offered for instance by Intel and AMD, at considerable development cost. Note
that no standard exists (yet) for functions with vector arguments.

Another approach is to write the libm code in such a way that it will autovectorize well.
Then, the vectorization itself (i.e. the use of vector instructions) is delegated to the compiler.
For this to work, the code must obey certain rules, essentially regarding the tests: tests that
translate to branches in the code should be avoided, and replaced with tests that translate to
data selection [76]. This entails speculative execution, which typically increases the latency,
as both branches of the test must be executed before the selection. However vectorization
makes up for this by improving the throughput. Experiments with the Cephes library [209]
showed this approach to be extremely effective, both in terms of computational efficiency and
portability, with recent versions of the GCC compiler.

This second approach is therefore the one chosen here. For this purpose, there are
optimization steps that specifically rework the control path of the function, depending on
its intended use. For high-throughput, vectorizable code with speculative execution must
be generated. For low latency code, the main objective is to make the common case fast [7],
while speculative execution may still be used to exploit the ILP offered by the processor.

Initial experiments with our generator show that autovectorized code on 4-way SSE2
SIMD achieves speedups above 3 over the scalar version. This is consistent with [209].

A class for libm function

If the function is not a black box, but one of the C11 libm functions, it comes with a more
complete specification, for instance including the management of exceptional numbers in
input or output, a significant amount of the function code in a classical libm. This is not only
a constraint, as it also enables us to use well-known techniques for a specific function.

Another advantage of having an explicit reference to the function concerns its testing. It
is possible to generate random tests out of a black-box function, but we can do better if the
function is known. It is possible, for instance, to design corner case or regression tests (for
instance to check that a function overflows exactly when it should or handle subnormals
properly – the Gappa-based proof generation does not cover special values). Also, for random
testing, the default random generator can be overridden with a function-specific one that
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will stress the function on the parts of its domain where it is most useful. This applies to
functional testing, but even more to performance testing. For instance, what matters to users
of exp is its average performance on the small domain where it is defined, not on the full
FP range where it mostly returns 0 or +∞. Similarly, performance tests for log should use
a pseudo-random number generator strongly imbalanced towards positive numbers. For
sin it should concentrate on the first periods, but avoid over-testing the very small numbers
(which represent almost half the FP numbers) where sin𝑥 ≈ 𝑥.

The proposed framework therefore defines a class for a C11 function with its test infras-
tructure. Instances of this class (one per function) may overload some methods of this class,
such as the generator of regression tests with some default values and one or few generators
of random input.

Wrapping up: current state of the project

The back end code generator (processor classes, generic optimization steps and proof
generators) currently consists of 3800 lines of Python code (counted by the CLOC utility) for
the open-source part covering the generic and 86-optimized processor classes. In addition
there are also a few proprietary files related to the Kalray processor.

The C11 function generators currently amount to 2482 lines of code. This includes exp, log,
log1p, log2, and sin/cos at various degrees of completion (they generate working code, but
not always of performance comparable to handwritten code). There are also inverse, division,
inverse square root, and square root implementations, essentially intended for processors
without a hardware divider, such as the IA64 or Kalray. Inverse approximation is actually
of more general use and can replace standard division in situations where it is needed with
accuracy lower or higher than the FP precision.

A function generator typically consists of 200-300 lines of code. Considering that the
generated code is about 100-200 lines, the Gappa proof about the same size, and that one
generator produces many code flavors, the code generator approach should be much easier
to maintain.

Near-term future work include adding ARM processors and more functions. Medium-
term future work include an OpenCL back end to target GPUs (increasingly used as FP
accelerators), more evaluation scheme optimization using CGPE [194], and the generation of
correctly-rounded function flavors. An interface with the PeachPy framework [75] should
also be investigated.

4.2.5 Conclusions and future work

This Section discusses two approaches to addressing the challenges faced by libm devel-
opers. The first is automated generation of evaluation schemes, to address the large number
of functions of interest. The second is a specific development framework, to address the large
number of hardware targets of interest. These two approaches were developed independently,
and current work focuses on integrating them more. A good case study for working on such
an integration is the correct rounding of elementary functions. It presents several challenges,
such as function evaluation in larger-than-standard precisions or less common formats, or
vectorization of a technique centered on a run-time test [264].

Ideally, we wish we could have a generator where we have a clear separation (as on
Figure 4.1) between a front-end building an approximation scheme, and a back end imple-
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menting it on a given target technology. A challenge is that the front-end itself must often
be directed by the target context. A good example of this is table-based range reduction
techniques. Formally capturing this complexity is currently out of reach. Happily, it is always
possible, as in tools like ATLAS, to perform an empirical exploration of the parameter space:
generate several variants, compile and time then, and pick up the best. This technique could
also help with out-of-order processor architectures whose behavior is too hard to model
anyway.

Finally, as the codes produced by the current generators are already hardened through
the use of Gappa as a formal proof tool, integration of code generation into certified code
development suites such as Why, or even model checkers, could be investigated.

4.3 Open-Ended Function Generation

In the last Section, we have presented an overview on the different use-cases for code
generators for mathematical functions. While we have already hinted at the fact that our open-
ended code generator metalibm-lutetia can be applied to functions which are not defined
algorithmicly but by some kind of mathematical equation, such as a differential equation,
we have not explained in detail how such code generation ab initio would work. We shall
do so in this Section, which is based on [163]. The combination of software that resulted
from this experiment is highly experimental; for this reason we refer to our code generator as
Frankenstein.

4.3.1 Implementation of Special Functions

Fixed-precision floating-point (“FP”) operations come with varying performance and
accuracy guarantees. Basic operations such as multiplication are typically implemented
in hardware and, being correctly rounded, provide perfect accuracy. So-called elementary
functions like exp and log are provided in software through general-purpose mathematical
libraries (libms). They are well-optimized for performance and either correctly rounded, as
recommended by the IEEE754 Standard [117], or provided with maximum error not exceeding
one unit in the last place.

This work is concerned with special functions, i.e., “functions which are widely used in
scientific and technical applications, and of which many useful properties are known” [94].
Some, like Bessel functions or the Gaussian error function, are present in some libms. Most are
provided by specialized libraries such as GSL or Root. Others are only available in computer
algebra systems like Maple and Pari and have no efficient fixed-precision implementation.
The NIST Digital Library of Mathematical Functions [1] contains a good overview of existing
implementations.

There is a huge gap in both performance and rigor between these implementations and
state-of-the-art elementary functions. However, implementing or reimplementing special
functions manually in the classical way is tedious and it requires considerable expertise. And
indeed, in many cases, publicly available implementations of a given special function all
derive from a single source, typically Cephes [193].

This Section presents the first results of a project exploring the implementation of special
functions through automatic code generation. In our view, this is the only feasible way to
implement wider classes of special functions while bridging the quality gap with respect to
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elementary functions. Additionally, code generation allows for production of specialized
implementations tailored to specific applications, in terms of accuracy, supported domain or
code properties.

Our focus is on special functions satisfying linear ordinary differential equations of the
form

𝑝𝑟(𝑥)𝑓 (𝑟)(𝑥) + · · ·+ 𝑝1(𝑥)𝑓 ′(𝑥) + 𝑝0(𝑥)𝑓(𝑥) = 0, 𝑝𝑖 ∈ Q[𝑥]. (4.6)

Such functions are called D-finite or holonomic. A key idea in the field of D-finite functions is
that an equation such as (4.6) along with initial values makes up a concise exact representation
of its solution that can be used in computations.

Many common special functions can be defined this way. Among the better known special
functions of mathematical physics, univariate D-finite functions include in particular the
error function (and related functions such as the Dawson functions or the Voigt profile), the
Airy functions (as well as Scorer functions, generalized Airy functions. . . ), the Bessel and
Hankel functions, the Struve functions of integer order, the hypergeometric and generalized
hypergeometric functions, the spheroidal wave functions, and the Heun functions.

Under the term code generator, we understand a software tool which takes as input a
description of a function 𝑓 , a set of floating-point inputs 𝑋 and a target accuracy 𝜀 > 0, and
which generates source code (in our case, in C) that provides a function ̃︀𝑓 satisfying

∀𝑥 ∈ 𝑋,
⃒⃒
⃒⃒
⃒
̃︀𝑓(𝑥)− 𝑓(𝑥)

𝑓(𝑥)

⃒⃒
⃒⃒
⃒ 6 𝜀. (4.7)

In this work, we consider inputs in IEEE754 double precision (binary64) format taken in a
relatively small interval [𝑎, 𝑏], say of width 𝑏− 𝑎 < 100, and accuracies compatible with that
format, i.e., 2−53 6 𝜀 6 1. These restrictions can be loosened with some manual work, so that
implementations on the whole set of double precision numbers become feasible.

Code generation for mathematical functions is not entirely a new idea. A powerful toolbox,
including in particular Gappa [64] and Sollya [41], has been developed in recent years to
help human developers with the most tedious steps of the implementation process. Building
on these advances, several authors have considered code generation both for “flavors” of
a fixed function and for “black-box” functions given as executable code [30, 32, 62, 148, 165].
Independently, Beebe [14] produced a new, very extensive mathematical library with the help
of semi-automatic code generation. We base our work on the black-box approach of [165],
where the starting point is executable code, able to evaluate 𝑓 and its first few derivatives
on intervals, up to any required precision. Providing such an evaluator is easy when 𝑓 is a
composition of basic elementary functions, thanks to multiple-precision interval libraries, but
it is a major limitation for more general functions.

Nevertheless, if 𝑓 satisfies some kind of functional equation, any rigorous arbitrary-
precision numerical solver could in principle play the role of the black box. In the case of
D-finite functions, such solvers can be built in practice [198, 245]. Moreover, the behavior
of D-finite functions in the neighborhood of their singularities is well-understood, opening
the door to further extensions of the method. These observations were, in some sense, the
starting point of the present work. We soon noticed that the interval black-box model is not
well suited to our case, as the number of queries to the function tends to be very large. This
led us to favor a different interface, based on polynomial approximations, as described in
Section 4.3.2.
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This Section is further organized as follows. Section 4.3.2 describes the general archi-
tecture of our function generation pipeline and introduces our prototype implementation.
Section 4.3.3 focuses on the frontend part, that is, the rigorous ODE solver. Section 4.3.4 dis-
cusses the backend, which is the part in charge of floating-point implementation choices. The
remaining Section presents experimental results and applications.

4.3.2 From Differential Equations to C-Code

This text describes both an approach to code generation for D-finite functions and ex-
periments performed with a prototype implementation of this approach. Our prototype,
named Frankenstein, is available from https://gforge.inria.fr/git/metalibm/
frankenstein.git. It is based on modified versions of two existing software packages,
Metalibm [148], written in Sollya [41], and NumGfun [189], written in Maple. The name
should give a pretty accurate idea of how the combination is realized. Thus, not all design
choices have the same significance: while some would survive a cleaner rewrite, others are
only justified by the goal of producing a usable prototype out of two research-quality codes
that had never been intended to work with each other. Here we focus on the former category,
with brief mentions of more peculiar features of Frankenstein as necessary.

differential equation

truncated Taylor series

compact rough approx.

tight approximation

representable approximation

implemented polynomial

C code

bounds, recurrence

economization

Remez algorithm,
domain splitting

FP coefficients optimization

error-free transformation,
FP error analysis

Frontend

Backend

Figure 4.14 – A piecewise polynomial approximation pipeline.

Consider a sufficiently small interval 𝐼 = [𝑎, 𝑏] ⊂ R and a solution 𝑓 of (4.6) defined on 𝐼 .
Assume for simplicity that 0 ∈ 𝐼 and 𝑝𝑟(𝑥) ̸= 0 for 𝑥 ∈ 𝐼 . The function 𝑓 is then analytic

https://gforge.inria.fr/git/metalibm/frankenstein.git
https://gforge.inria.fr/git/metalibm/frankenstein.git
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on 𝐼 , and the vector of initial values 𝐹 (0) = (𝑓(0), . . . , 𝑓 (𝑟−1)(0)) characterizes 𝑓 among the
solutions of (4.6). Assume additionally that |𝑓(𝑥)| 6 21024(1− 2−53) for 𝑥 ∈ 𝐼 . Then, special
floating-point values (NaN, ±∞) occur neither on input nor on output. Denoting by F the set
of double-precision numbers, our goal is to produce a program computing a value ̃︀𝑓(𝑥) ∈ F
satisfying (4.7) with 𝑋 = 𝐼 ∩ F.

Our method takes as input (𝑝𝑖)
𝑟
𝑖=0 and 𝐹 (0) (which together define 𝑓 ), 𝐼 , 𝜀, and various

constraints on allowable implementations. It either succeeds and produces a program sat-
isfying (4.7) by construction 4, or fails if no implementation fitting the constraints is found.
Failure does not imply that no feasible solution exists.

One way to view the process leading from the definition of 𝑓 by (4.6) to an implementation
is as a rigorous piecewise polynomial approximation pipeline, as illustrated on Figure 4.14.
Each stage receives a set of approximations of 𝑓 (and possibly its first few derivatives) by
polynomials on subintervals of 𝐼 and produces approximations with different properties that
are passed on to subsequent stages. The subintervals vary from stage to stage, and typically
overlap even within a single stage. For example, the domain splitting procedure can use both
a rough approximation on the whole domain to get a general picture of the behavior of 𝑓 , and
tight approximations on tiny intervals to compute precise values.

The complete pipeline can be approximately divided into a frontend and a backend.
Roughly speaking, the frontend is the part where decisions are driven by the analytic proper-
ties of 𝑓 . The backend is the part where they are driven by the floating-point environment
and other implementation constraints. To work with another class of mathematical functions,
one would replace the frontend; to target a different evaluation environment (fixed-point
arithmetic, say), one would swap out the backend. There is no formal abstraction of how
the backend can query the function, though, and both parts have full knowledge of the
implementation problem.

In Frankenstein, the frontend and the backend respectively correspond to NumGfun and
Metalibm. For convenience reasons, the process is driven by the backend, which can ask the
frontend for approximations of variable quality on various subintervals. As we reuse code
written for the black-box function model, the backend mostly uses these approximations
to perform interval evaluations, but we expect to make more direct use of the polynomial
representation in future developments.

Our general implementation strategy fits the standard pattern of special function imple-
mentations and is especially close to that of Harrison [109]. Classical argument reduction
algorithms based on algebraic properties of elementary functions typically do not apply. Ac-
cordingly, the only feature of 𝑓 that we consider to reduce the implementation domain is its
parity. Parity properties can be detected either by numerical comparison of 𝑓(𝑥) and 𝑓(−𝑥)
(as Frankenstein currently does), or based on the differential equation. Periodic functions
could be handled in a similar way but are very uncommon.

We then single out a small number of “interesting points”, the neighborhood of which
need to be handled in a special way. Under our working hypotheses, interesting points include
𝑥 = 0, where the floating-point grid is denser than usual, and the points 𝑥 with 𝑓(𝑥) ≃ 0,
where obtaining a relative error bound requires special care. In a more general setting, one
would add at least ±∞ and the singularities of 𝑓 to the list. In a small interval around each
interesting point, approximations of 𝑓 are computed and implemented in a way that takes into

4. This is not entirely true of Frankenstein yet. Although the overwhelming part of the code uses rigorous
error bounds, some heuristic estimates remain.
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account the special constraints. The remaining subintervals (if any) are further subdivided
until approximation by small-degree polynomials becomes feasible.

Let us now consider in more detail the main ingredients of the process, starting with the
frontend.

4.3.3 From a differential equation to rigorous approximations

The frontend’s role is to provide the backend with rigorous polynomial approximations
of 𝑓 of the form

∀𝑥 ∈ 𝐽, |𝑓(𝑥)− 𝑝(𝑥)| 6 𝜂 (4.8)

for various subintervals 𝐽 ⊆ 𝐼 . As Equation (4.8) suggests, in our architecture, the approxi-
mations come with absolute error bounds. Indeed, these are often easier to obtain and this
choice does not hinder the use of relative error bounds in later stages.

Values of 𝐽 above can range from point intervals 𝐽 = {𝑥} to 𝐽 = 𝐼 . It is not necessary
that the frontend be able to find approximations on arbitrarily wide intervals, as the backend
has the necessary logic to split 𝐽 , if the returned error bound is infinite (or too large). The
only requirement is that sufficiently precise queries on sufficiently thin intervals eventually
produce satisfying approximations.

The smallest useful value of 𝜂 in our setting is slightly less than the smallest subnormal
number, 2−1074. In principle, it would be possible to replace 𝑓 once and for all by a set
of polynomial approximations achieving such an accuracy. The frontend of Frankenstein
is more flexible and it can compute arbitrarily good approximations. Precise polynomial
approximations on wide intervals quickly become large and costly to compute. For historical
reasons, our frontend provides a separate interface dedicated to points and very thin intervals
that always returns “polynomial approximations” reduced to constants, which can reach
absolute precisions log 𝜂−1 in the hundred of thousands if necessary.

The computation of the approximations (4.8) is based on a combination of classical tech-
niques that we now summarize. We refer the reader to [189, 245] for details.

Transition matrices

Recall that 𝑓 is specified by the differential equation (4.6) and the vector of initial val-
ues 𝐹 (0), or, to be precise, rigorous arbitrary precision approximations of 𝐹 (0). Let us
also extend the notation 𝐹 (𝑥) = (𝑓(𝑥), . . . , 𝑓 (𝑟−1)(𝑥)) to arbitrary 𝑥. Polynomial approxi-
mations on an interval 𝐽 ⊆ 𝐼 will be derived from the Taylor expansion of 𝑓 around the
center 𝑐 of 𝐽 . This expansion is easily computed from the differential equation and the “ini-
tial value” 𝐹 (𝑐). To deduce 𝐹 (𝑐) from 𝐹 (0), we use Taylor expansions at intermediate points
𝑥0 = 0, 𝑥1, . . . , 𝑥𝑛 = 𝑐 chosen in such a way that 𝑥𝑘+1 lies within the disk of convergence of
the Taylor expansion of 𝐹 at 𝑥𝑘. In other words, our frontend is essentially a rigorous ODE
solver based on the so-called method of Taylor series [187].

More precisely, we proceed as follows [47, 245]. By linearity of (4.6), for all 𝑥, 𝑦 ∈ 𝐼 , there
exists a matrix ∆𝑥(𝑦) ∈ R𝑟×𝑟 depending only on (4.6) (not on the particular solution 𝑓 ) and
such that 𝐹 (𝑦) = ∆𝑥(𝑦)𝐹 (𝑥). We have ∆𝑥(𝑧) = ∆𝑦(𝑧) ∆𝑥(𝑦) for all 𝑥, 𝑦, 𝑧, and hence

𝐹 (𝑐) = ∆0(𝑐)𝐹 (0) = ∆𝑥𝑛−1(𝑐) . . .∆𝑥1(𝑥2) ∆0(𝑥1)𝐹 (0). (4.9)

The entries of ∆𝑥(𝑦) are values at 𝑦 of solutions of (4.6) corresponding to unit initial values
at 𝑥 (or derivatives thereof). Denoting by 𝜌(𝑥) the distance from 𝑥 to the nearest complex
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root of the leading coefficient 𝑝𝑟 of (4.6), the Taylor expansion at 𝑥 of any solution of (4.6) has
radius of convergence at least 𝜌(𝑥). It is a classical fact that the coefficients of these expansions
obey linear recurrences with polynomial coefficients, making it easy to compute as many
terms as needed. As we assumed that 𝑝𝑟 does not vanish on 𝐼 , computing 𝐹 (𝑐) reduces to
forming the product (4.9), where each factor ∆𝑥(𝑦) can be evaluated by summing convergent
power series, whose coefficients are easy to compute. Binary splitting can be used to compute
the partial sums efficiently to very high precisions [47].

Our assumption that the initial values are provided at a point of 𝐼 , is artificial: the above
argument still works with 0 /∈ 𝐼 as long as the leading coefficient 𝑝𝑟(𝑥) of (4.6) does not vanish
between 0 and 𝐼 . In addition, (4.6) actually defines 𝑓 for complex values of 𝑥, and nothing
prevents the path (𝑥0, . . . , 𝑥𝑛) from going through the complex plane. If 𝑝𝑟(𝑠) = 0 for some 𝑠
between 0 and 𝐼 , analytic continuation along a path avoiding 𝑠 still defines 𝑓 on 𝐼 (in general
in a way that depends on the path). Furthermore, when 0 /∈ 𝐼 , we can relax the assumption
that 𝑝𝑟(0) ̸= 0: the theory extends to the case where 0 is a so-called regular singular point
of (4.6) [189, 246]. Both of these extensions are supported in Frankenstein, albeit with specific
tool setup and subject to heuristic error estimates in some cases. The second one is useful
because many classical special functions are best characterized by their behavior at regular
singular points of their defining equation. A typical example is the family of Bessel functions
(see Example 3 below).

Error bounds

It is crucial that the frontend provides rigorous error bounds on the approximations it
computes, as these approximations are the backend’s only access to the function 𝑓 . Here, we
recall a simple bound computation technique based on the theory of majorizing series [114,
Chap. 2]. Frankenstein (via NumGfun) actually uses a more sophisticated variant of the same
technique [191], but the present version conveys the main ideas and it would probably suffice
for our purposes.

Consider a power series with matrix coefficients (or, equivalently, a matrix of power
series) 𝑌 (𝑥) =

∑︀∞
𝑛=0 𝑌𝑛𝑥

𝑛 ∈ R𝑟×𝑟[[𝑥]], and let ‖ · ‖ denote a matrix norm. We write 𝑌 4 𝑤 if
𝑤(𝑥) =

∑︀∞
𝑛=0𝑤𝑛𝑥

𝑛 ∈ R+[[𝑥]] is a power series that bounds 𝑌 coefficient-wise, i.e., ‖𝑌𝑛‖ 6 𝑤𝑛
for all 𝑛 ∈ N. The method transfers such bounds on the coefficients of differential equations
to similar bounds on the solutions.

Our goal is to control the error committed by truncating the Taylor expansions of a solution
of (4.6). Without loss of generality, we restrict ourselves to Taylor expansions at the origin.
Rewrite (4.6) in matrix form, as

𝑌 ′(𝑥) = 𝑃 (𝑥)𝑌 (𝑥), (4.10)

where 𝑃 ∈ Q(𝑥)𝑟×𝑟 is a companion matrix with entries of the form 𝑝(𝑥)/𝑝𝑟(𝑥), and for
notational simplicity 𝑌 is also taken to be a matrix. The matrix function 𝑃 admits a convergent
power series expansion at 0, whose coefficients 𝑃𝑛 satisfy ||𝑃𝑛|| = O(𝛼𝑛) for all 𝛼 > 𝜌(0)−1.
Given such an 𝛼, it is not too hard to compute 𝑀 > 0 such that

𝑃 (𝑥) 4 𝑞(𝑥) :=
𝛼𝑀

(1− 𝛼𝑥)
.

Expanding both sides of (4.10) in power series and collecting the matching powers of 𝑥, we
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obtain

(𝑛+ 1)𝑌𝑛 =

𝑛∑︁

𝑗=0

𝑃𝑛𝑌𝑛−𝑗 . (4.11)

The same reasoning applied to the equation 𝑤′(𝑥) = 𝑞(𝑥)𝑤(𝑥) yields

(𝑛+ 1)𝑤𝑛 =

𝑛∑︁

𝑗=0

𝑞𝑛𝑤𝑛−𝑗 . (4.12)

Now assume 𝑤0 > ‖𝑌0‖. Comparing (4.11) with (4.12), we see by induction that 𝑌 (𝑥) 4 𝑤(𝑥).
But the second equation is solvable in closed form: we have

𝑤(𝑥) =
𝑤0

(1− 𝛼𝑥)𝑀
.

This explicit expression makes it easy to bound the tails 𝑤𝑛𝑥𝑛 + 𝑤𝑛+1𝑥
𝑛+1 + · · · , and hence

also 𝑌𝑛𝑥𝑛 + 𝑌𝑛+1𝑥
𝑛+1 + · · · , which yields truncation orders that guarantee a certain accuracy.

Polynomial approximations

We are now ready to combine the results of the previous sections to obtain rigorous
polynomial approximations on a given interval 𝐽 . Write 𝐽 = [𝑐− 𝛿, 𝑐+ 𝛿], and assume that
𝛿 < 𝜌(𝑐). With the notation of Section 4.3.3, we have

𝐹 (𝑐+ 𝜉) = ∆𝑐(𝑐+ 𝜉) ∆𝑥𝑛−1(𝑐) . . .∆𝑥1(𝑥2) ∆0(𝑥1)𝐹 (0) (4.13)

for |𝜉| 6 𝛿. Each factor (except 𝐹 (0)) is given by power series that we can truncate so as to
guarantee a prescribed accuracy. Error bounds on the individual factors are combined by
repeated use of the inequality

‖ ̃︀𝐴 ̃︀𝐵 −𝐴𝐵‖ 6 ‖ ̃︀𝐴‖ ‖ ̃︀𝐵 −𝐵‖+ ‖ ̃︀𝐴−𝐴‖ ‖𝐵‖.

Once we replace each series by a truncation (and 𝐹 (0) by an approximation with rational
entries), the entries of (4.13) become polynomials in 𝜉 with rational coefficients.

Thus, we compute the entries of ∆𝑐(𝑐+ 𝜉) truncated to a suitable order as polynomials
in 𝜉 and multiply the resulting matrix by an approximation of ∆0(𝑐)𝐹 (0). The entries of
the result readily provide the first 𝑟 derivatives of 𝑓 . Higher-order derivatives, if needed,
can be obtained by multiplying 𝐹 (𝑐+ 𝜉) on the left by a row vector of rational functions (or
polynomial approximations of rational functions) deduced from (4.6). In Frankenstein, most
of these steps are performed exactly, using multiple precision rational arithmetic. Roundoff
errors in the remaining steps are taken into account in the result.

Taylor series typically do not provide good approximations on intervals. Additionally, the
bounds of Section 4.3.3 can be quite pessimistic. For these reasons, polynomials, computed as
outlined above, tend to have very high degree. However, due to the way they are constructed,
the rescaled coefficients 𝑐𝑛𝛿𝑛 quickly decrease to zero, and typically |𝑐𝑛 𝜉𝑛| ≪ 𝜂 for large 𝑛.
Before handing it to the backend, the frontend hence reduces the degree of the computed
polynomial 𝑝 by economization [87, §4.6]: while the leading term of 𝑝 is small compared
to 𝜂, a multiple of the Chebyshev polynomial 𝑇𝑛 (rescaled to the interval 𝐽) chosen so that
the leading terms cancel is subtracted from 𝑝. The error bound is updated accordingly. (The
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choice of Chebyshev polynomials makes it possible to take advantage of the fact that the error
bound only needs to hold for 𝑥 ∈ 𝐽 , not for complex 𝑥 with |𝑥− 𝑐| < 𝛿.) This procedure is
very effective at producing polynomials of reasonable size that can easily be manipulated by
the backend.

4.3.4 From rigorous approximations to evaluation code

It is the backend’s job to transform the high-degree, rough approximation produced by
the frontend into fine-tuned approximations with suitable FP properties and eventually, into
source code. In absence of classical argument reduction techniques, implementation of the
function is reduced to piecewise polynomial approximation. The backend hence needs to
compute four pieces of information, as discussed in the next Sections.

1. The implementation interval 𝐼 needs to be split into subintervals 𝐼𝑘, together covering
𝐼 , such that an approximation polynomial of small degree is possible over each 𝐼𝑘.

2. These small degree polynomials need to be computed, initially with real coefficients.

3. Connected with the approximation step is the problem of choosing an appropriate
translation 𝑓(𝑡𝑘+·) on a new domain 𝐼𝑘−𝑡𝑘. Indeed, the evaluation of the approximation
behaves better when 𝐼𝑘 − 𝑡𝑘 is a small interval around 0.

4. The backend needs to transform the small-degree approximation polynomial on each
subdomain into a polynomial with FP coefficients, suitable for evaluation in FP arith-
metic, and generate code for that FP-based polynomial evaluation.

Domain splitting

Given a target accuracy 𝜀 and a maximum degree 𝑑, the backend starts with computing a
list of intervals 𝐼𝑘 touching each other in so-called split-points 𝑠𝑘, i.e. such that 𝐼𝑘−1∩𝐼𝑘 = {𝑠𝑘},
covering the whole interval 𝐼 =

⋃︀
𝑘 𝐼𝑘 and such that for each 𝑘 there exists a polynomial

𝑝𝑘 ∈ R[𝑥] of degree no larger than 𝑑 approximating 𝑓 on 𝐼𝑘 with a relative error at most 𝜀:

∀ 𝑘, ∀𝑥 ∈ 𝐼𝑘,
⃒⃒
⃒⃒𝑝𝑘(𝑥)− 𝑓(𝑥)

𝑓(𝑥)

⃒⃒
⃒⃒ 6 𝜀. (4.14)

Such a splitting can be computed using an algorithm [148] based on bisection, interpolation of
𝑓 in Chebyshev nodes and application of de la Vallée-Poussin’s theorem [38]. In Frankenstein,
we leverage the existing Sollya procedure guessdegree [41] to implement this step.

Small degree polynomial approximation

On each subdomain 𝐼𝑘, the backend computes a polynomial approximation 𝑝𝑘 ∈ R[𝑥]
of degree at most 𝑑 for the function 𝑓 . The 𝑝𝑘 are computed as minimax approximations
with relative error, using a modified Remez-Stiefel algorithm [38]. However, these polyno-
mials with real coefficients 5 are not immediately suitable to IEEE754 FP evaluation. Several
problems arise.

5. As the underlying Sollya environment is FP-based, any polynomial we can exhibit has of course FP
coefficients. However, as precision may be increased at will at this generation stage, the polynomials appear to
have real coefficients.
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When 0 ̸∈ 𝐼𝑘, in particular when 𝐼𝑘 contains values 𝑥 ∈ 𝐼𝑘 that are significantly larger
than 1, Horner evaluation (or any other Estrin-like evaluation) may behave badly. Roughly
speaking, at each step 𝑞𝑖+1(𝑥) = 𝑐𝑖 + 𝑥× 𝑞𝑖(𝑥), the evaluation error accumulated on 𝑞𝑖(𝑥) will
be amplified by multiplication with 𝑥 when |𝑥| ≫ 1, not attenuated [165]. After splitting 𝐼𝑘,
if its radius is too large, we translate both the function 𝑓 and the interval 𝐼𝑘 by 𝑡𝑘 to always
be in the case when all 𝑥 ∈ 𝐼𝑘 − 𝑡𝑘 stay small. In most cases, taking (a rounded value of) the
midpoint of 𝐼𝑘 is appropriate, while ensuring that the translated argument 𝜉 = 𝑥− 𝑡𝑘 can be
computed exactly in FP arithmetic thanks to Sterbenz’ lemma [165, 238]. Special care is used
when 𝑓 has a zero in 𝐼𝑘 (see Section 4.3.4). Further, 𝑡𝑘 may be optimized to take into account
FP effects on the coefficients of the polynomial [165].

When 𝐼𝑘 is small and the function 𝑓 is symmetrical around some point in 𝐼𝑘, the minimax
approximation polynomial 𝑝𝑘 tends to reflect the symmetry: some monomials have very
small coefficients compared to others. This effect may hinder FP Horner evaluation due
to catastrophic cancellation but it can also be exploited to reduce the number of non-zero
coefficients of the polynomial [160].

Achieving relative error bounds for functions with zeros

Clearly, the ratio (𝑝𝑘(𝑥)−𝑓(𝑥))/𝑓(𝑥) can stay bounded only if 𝑓 has no zero in the domain
for 𝑥 ∈ 𝐼𝑘, or if 𝑝𝑘 has a zero wherever 𝑓 has one. Classical polynomial approximation theory
either considers absolute error bounds or excludes functions with zeros. It can be extended to
cover approximation with relative error of functions 𝑓 with 𝑓(0) = 0 as follows: when 𝑓 is
known to have a zero of multiplicity𝑚 at 𝑥 = 0, one computes a polynomial approximation 𝑞𝑘
of 𝑥−𝑚𝑓(𝑥) and takes 𝑝𝑘(𝑥) = 𝑥𝑚 · 𝑞𝑘(𝑥). The only requirement is not to use Remez’ original
minimax algorithm but an enhanced version by Stiefel [38].

Since the backend anyway uses approximation domains 𝐼𝑘−𝑡𝑘 containing 0, the technique
above already makes it possible to handle functions with a zero at some FP number. It suffices
to take 𝐼𝑘 small enough to contain a single zero of 𝑓 and 𝑡𝑘 equal to that zero in order to
obtain 𝑓(𝑡𝑘 + 𝜉) = 0 for 𝜉 = 0. The value of 𝑡𝑘, can easily be computed with any numerical
solver, such as Newton’s iteration. No rigor is required in this step; if the zero is not correctly
determined, relative error polynomial approximation will simply fail.

The technique no longer applies when 𝑓 has a zero 𝑐 /∈ F. However, in this case, 𝑓
is actually never zero on the FP numbers it is to be evaluated at. This means that even
if the ratio (𝑝𝑘(𝑥) − 𝑓(𝑥))/𝑓(𝑥) is unbounded for 𝑥 ∈ 𝐼𝑘, it stays bounded over 𝐼𝑘 ∩ F.
Provided that the procedure we use to bound the relative error only takes into account FP
numbers, approximation of a function 𝑓 with non-FP-representable zeros boils down to two
subproblems: computing a minimax polynomial for 𝑓 and translating the original function
such that FP-based polynomial evaluation will exhibit bounded evaluation error.

The minimax polynomial can be computed as follows: the function 𝑔(𝑥) = 𝑓(𝑐 + 𝑥)
has an exact (FP-representable) zero at 0, and can be evaluated at any desired precision by
computing 𝑐 with a rigorous Newton algorithm. In the Sollya framework, 𝑔 is implemented
by an expression tree containing a constant function 𝑐 whose evaluation algorithm searches
the original domain 𝐼𝑘 for a zero of 𝑓 whenever and at whatever precision needed. This is
enough for the Remez-Stiefel minimax algorithm to be applicable to 𝑔.

Once 𝑐 itself and a polynomial 𝑝(𝑥) approximating 𝑔(𝑥) over 𝐼𝑘− 𝑐 are known, we set 𝑡𝑘 to
𝑐 rounded to the nearest FP number. The polynomial 𝑟(𝑥) = 𝑝(𝑡𝑘 − 𝑐+ 𝑥) then approximates
𝑓(𝑡𝑘 + 𝑥) over 𝐼𝑘 − 𝑡𝑘 ∋ 0. At 𝑥 = 𝑡𝑘 (the FP value nearest to 𝑐), the translated argument
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𝜉 = 𝑥− 𝑡𝑘 is exactly zero, hence FP Horner evaluation of 𝑟 will return the constant coefficient
of 𝑟, which is equal to (a rounded version of) 𝑓(𝑐). For the FP 𝑥 just after the zero, 𝜉 will fit
on a small number of bits due to cancellation in 𝜉 = 𝑥− 𝑡𝑘, hence FP Horner evaluation will
behave correctly, too. The accuracy of evaluation can be checked statically using Gappa as
explained below.

Note, though, that the polynomial 𝑟 passed to the code generation step then contains
coefficients involving the Newton-iteration based representation of 𝑐. In contrast, in the usual
case (when 𝑓 has no zero in the domain), the coefficients directly come from the Remez-Stiefel
minimax algorithm.

FP code generation for polynomials

Finally, the backend needs to generate a code sequence, based on IEEE754 FP arithmetic,
for each subdomain 𝐼𝑘, and to connect these code sequences through a branching sequence
determining the appropriate subdomain given an input 𝑥 ∈ 𝐼 . Generating the subdomain
determination sequence is easy.

Generating the polynomial evaluation is harder. The backend takes the following four
sub-steps.

1. It determines the minimal precisions needed for the coefficients of the approximation
polynomial 𝑝𝑘 on each subdomain, following the approach described in [165].

2. It replaces the polynomial 𝑝𝑘 ∈ R[𝜉] with a polynomial ̃︀𝑝𝑘 ∈ F[𝜉] with FP coefficients.
This could be done by rounding the real coefficients, however, equi-oscillation properties
of the minimax polynomial and therefore accuracy might be affected too much. We
therefore use a technique [38] based on lattice reduction which globally searches for a
FP-valued-coefficients polynomial “close” to the original real-coefficients polynomial.

3. Starting with the target accuracy 𝜀, the backend estimates suitable accuracies for the
intermediate steps of a Horner evaluation of ̃︀𝑝𝑘. This choice of accuracies determines
the FP precisions—and, possibly, double-double or triple-double expansions—to be
used in the different steps. The technique is described in [160, 165]. The backend then
outputs C code for polynomial evaluation along with a Gappa [64] proof script.

4. Finally, the backend runs the proof script using Gappa, hence verifying the correctness
of the accuracy estimates established in the previous step.

Evaluation-based vs. polynomial-based interfaces

In a cleanly designed special function code generator, the backend would take the rough
polynomial approximations produced by the frontend and proceed with refining them with-
out ever returning back to the original function 𝑓 . However, this would require the frontend
to take into account the relative error due to replacing 𝑓 by a polynomial, which requires
some understanding of FP properties of the eventual implementation, when 𝑓 has zeros in
the domain.

For that reason and for reasons due to the reuse of existing code, Frankenstein works in
a slightly different way. The backend binds a Sollya function object, corresponding to 𝑓 , to
the evaluator dedicated to tiny intervals provided by the frontend. This would in principle
be enough for the backend to run, since the backend—in all steps, even its polynomial
approximation ones—is purely based on (interval or point) evaluation. In practice, this
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Figure 4.15 – Relative overall error of generated implementation of erfc on [−2; 2].

simple interface is not enough. The number of function evaluations is too large to allow for
reasonable code generation performance. In addition, an evaluation-based interface makes it
hard to capture non-local properties of the function 𝑓 , such as monotonicity.

We therefore enhanced Sollya to allow a function object, such as the one bound to the
frontend’s representation for 𝑓 , to be annotated with an alternate approximate representation
along with a bound on the approximation error. The approximation polynomials generated
by the frontend provide such an approximate representation. When it needs to evaluate the
function 𝑓 at some point or over some interval, Sollya first tries to use the annotation. If this
first try is inconclusive, for instance if the approximation error is too large in view of the
evaluation precision, it falls back to the original evaluator bound to the frontend. Interval
evaluation using the annotation exploits global properties of the polynomial. In particular,
monotonicity over the whole annotation interval is detected once and for all and later used to
reduce interval evaluations on subintervals to evaluations at their endpoints.

That combination has given Frankenstein the necessary performance. We should mention
however that making the annotation mechanism usable for our purposes required some
fine-tuning in the Sollya architecture. In particular, as we have seen, the backend manipulates
not only 𝑓 itself, but also expression trees containing compositions of 𝑓 with other functions,
which need to be reflected on any polynomial annotation. In addition, code written in the
evaluation-based model tends to perform high-precision evaluations with no real need (that is,
to request information on 𝑓 that cannot have any influence on the correctness of the generated
code). The whole benefit of the polynomial annotations can be lost if too many evaluations
fall back to a slow arbitrary-precision evaluator that will try to satisfy these requests.

4.3.5 Numerical Results

Bounded intervals

As already mentioned, there is no complete guarantee that Frankenstein succeeds to
implement a given D-finite function. The following experiments show how it performs on
classical special functions. All these examples were handled automatically, with minimal
manual setup. The reported timings were measured on a typical desktop computer.

We start with a simple example where the functions stays away from zero on the whole
implementation domain.

Example 1. The complementary error function erfc(𝑥) = 1− 2𝜋−1/2
∫︀ 𝑥
0 𝑒

−𝑡2d𝑡 can be defined
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as the solution of

𝑓 ′′(𝑥) + 2𝑥𝑓 ′(𝑥) = 0, 𝑓(0) = 1, 𝑓 ′(0) = −2/
√
𝜋.

We implemented erfc in the range 𝐼 = [−2; 2], with a target accuracy 𝜀 = 2−62, under the
constraint that no generated polynomial have more than 14 non-zero coefficients. Such
a target accuracy slightly beyond double precision is typical for first phases of correctly
rounded implementations [165, 197]. Though we excluded them above, our code generator
is able to handle such accuracies in simple cases, automatically introducing double-double
expansions [165, 236], as necessary.

Figure 4.15 shows a plot of the relative error ̃︀𝑓(𝑥)/𝑓(𝑥)− 1 of the implementation. Code
generation took around 780 seconds. The code generator split 𝐼 into 16 subdomains of
varying length. In the subdomain 𝐼7 = [−2/3; 2/3], the only nonzero coefficients of the
generated polynomial are those of odd degree and that of degree 22, taking advantage [160]
of an approximate symmetry around 0. Accordingly, the Horner evaluation code for 𝑥 ∈ 𝐼7
performs evaluations in 𝑥2 in all but one steps. When executed, our implementation takes
between 110 and 350 machine cycles per call, with most calls completing in 260 cycles. For
comparison, a call to a typical libm exponential takes around 80 cycles.

We then consider an example with several zeros, none of which is representable in floating-
point.

Example 2. The Airy function Ai satisfies
{︃

Ai′′(𝑥)− 𝑥Ai(𝑥) = 0,

Ai(0) = 3−2/3Γ(2/3)−1, Ai′(0) = −3−1/3Γ(1/3)−1.

We implemented Ai on 𝐼 = [−4.5; 0], asking for an accuracy 𝜀 = 2−45. Frankenstein takes
280 seconds to generate an implementation. It splits the domain into 10 subdomains. In
two subdomains polynomials with some zero coefficients are used; the generated code
precomputes 𝑥2 accordingly. It can be checked that all subdomains containing zeros of Ai(𝑥)
are translated by an amount equal to the double-precision number nearest to the zero, and
an error plot confirms that the target accuracy is met even in the neighborhood of the zeros.
Evaluation of the generated function takes 60 to 90 cycles, with most calls completing in 72
cycles.

Our last example directly parallels Harrison’s implementation of Bessel functions for
“small” arguments [109, Section 3].

Example 3. The Bessel functions 𝐽0 and 𝑌0 are defined as solutions of Bessel’s equation

𝑥𝑓 ′′(𝑥) + 𝑓 ′(𝑥) + 𝑥𝑓(𝑥) = 0. (4.15)

We consider the function 𝐽0 on the interval 𝐼 = [0.5; 42] with a target accuracy of 𝜀 = 2−45.
The immediate neighborhood of 0 is excluded because (4.15) is singular at 𝑥 = 0 (its leading
coefficient vanishes). For the same reason, initial values 𝑓(0), 𝑓 ′(0) do not make sense for an
arbitrary solution of (4.15). However, 𝐽0 can still be defined as the unique solution whose
value tends to 1 as 𝑥→ 0. As mentioned in Section 4.3.3, Frankenstein’s frontend supports
such generalized initial conditions.
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Figure 4.16 – 𝑉 (𝑥) for 𝜎 = 1, 𝜆 = 1
2 .

Code generation starting from this specification took about 33 minutes. The code generator
splits the domain 𝐼 into 18 subdomains. The approximation polynomials in all subdomains
have non-zero coefficients. For some subdomains containing zeros of 𝐽 ′

0(𝑥), the implementer
chooses to store the coefficients as double-double expansions, even though it rounds the final
result to double precision. Evaluation of the generated implementation takes between 60 and
500 machine cycles, with most calls completing in 75 cycles.

Implementation on the whole real line: an example

In some cases at least, automatically generated implementations on bounded intervals can
be combined to implement a special function on the whole set of double-precision floating-
point numbers. We illustrate how this can be done on a simple example. The manual steps
we take are really an instance of a method of some generality, but we leave it to future work
to handle such cases without human intervention.

The Voigt profile 𝑉 (𝑥) (Figure 4.16) is a probability distribution used in particular in
spectrography, and whose computation has been the subject of abundant literature [234, 243].
It depends on two parameters 𝜆, 𝜎 > 0 and it is defined for 𝑥 ∈ R as a convolution of a
Gaussian distribution and a Cauchy distribution,

𝑉 (𝑥) =
1

𝜎
√

2𝜋

𝜆

𝜋

∫︁ +∞

−∞

exp −𝑥2
2𝜎2

(𝑥− 𝑡)2 + 𝜆2
d𝑡.

A change of variable yields the alternative expression

𝑉 (𝑥) =
1

𝜎
√

2𝜋

𝜆

𝜋

∫︁ +∞

−∞

exp (𝑢−𝑥)2
2𝜎2

𝑢2 + 𝜆2
d𝑢, (4.16)

and it is not hard to see that (4.16) satisfies
⎧
⎪⎪⎨
⎪⎪⎩

𝜎4𝑉 ′′(𝑥) + 2𝜎2𝑉 ′(𝑥) + (𝑥2 + 𝜆2 + 𝜎2)𝑉 (𝑥) =
𝜆

𝜋
,

𝑉 (0) =
1

𝜎
√

2𝜋
exp

(︂
𝜆2

2𝜎2

)︂
erfc

(︂
𝜆

𝜎
√

2

)︂
, 𝑉 ′(0) = 0.

(4.17)

(To remain in our general setting, a homogeneous ODE can be derived by differentiating one
more time.)

The Voigt profile with arbitrary parameters can be expressed in terms of the Faddeeva
function, itself a renormalization of the complex error function. A general implementation of
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Figure 4.17 – Relative overall error of our implementation for 𝑉 (𝑥).

these functions, due to Johnson [129], is used for instance in the standard library of the Julia
programming language. Here we are interested in implementing the function 𝑉 (𝑥) for fixed
𝜆 and 𝜎, with an overall relative accuracy 𝜀 = 2−45. In our experiment, we take 𝜎 = 1 and
𝜆 = 1

2 , but the method applies verbatim to any moderate rational values.
We start with generating an implementation for 𝑥 ∈ [0; 10]. With approximations having

at most 11 nonzero coefficients, [0; 10] is split into 33 subdomains of width varying from about
0.1 around 𝑥 = 5 to about 0.6 near the endpoints.

For large 𝑥, however, the computation of polynomial approximations starting with the
initial values at 0 as described in Section 4.3.3 is no longer feasible. Also, it would not make
any sense to split [10; 21024] into small subintervals. An obvious remedy is to consider 𝑓(𝜉) =
𝑉 (1/𝜉) on (0, 0.1). A change of variable in (4.17) shows that

𝜎4𝜉6𝑓 ′′(𝜉) + 2𝜎2𝜉3(𝜎2𝜉2 − 1)𝑓 ′(𝜉) + (𝜆2𝜉2 + 𝜎2𝜉2 + 1)𝑓(𝜉) =
𝜆𝜉2

𝜋
.

This equation has an irregular singular point at 0, beyond the scope of the polynomial
approximation method we discussed. Nevertheless, looking for solutions as formal power
series yields a unique divergent series (compare to [105])

𝜉2𝐿(𝜉) = 𝜉2 + (2𝜎2 − 𝜆2) 𝜉4 + (1𝜎4 − 10𝜎2𝜆2 + 𝜆4) 𝜉6 + · · · (4.18)

whose coefficients again satisfy a simple linear recurrence. It is well-known that such formal
solutions at infinity are asymptotic expansions of “true” analytic solutions and provide good
approximations for large 𝑥 [202]. In the present case, the solutions of the homogeneous part
of the equation decrease exponentially as 𝜉 → 0, 𝜉 > 0, so all solutions of the homogeneous
equation share the same asymptotic expansion (4.18).

With our values of 𝜎 and 𝜆, we estimated that the polynomial ̃︀𝐿 obtained by truncating
𝐿(𝜉) to the order 90 satisfies |̃︀𝐿(1/𝑥)− 𝑥2𝑉 (𝑥)| < 2−65 for all 𝑥 > 10. For the purposes of this
experiment, this truncation order was found numerically. Rigorous bounds could likely be
derived by the method of Olver [202, Chap. 7]. NumGfun does not support evaluations near
irregular singular points, but as ̃︀𝐿(𝜉) stays away from zero on [0, 0.1], we could directly pass
it to the Frankenstein backend. The resulting code uses two polynomials of degree 11 with
floating-point coefficients.

We then manually combined the two automatically generated codes into implementation
that works correctly on the whole of F. The Voigt function is even, so the final code starts by
dropping the sign of the argument. Based on a simple comparison, it then calls either the
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code for 𝑉 (𝑥) around zero or computes 𝜉 = 1/𝑥 (in double precision) and calls the code for
𝑉 (1/𝑥) around zero.

Figure 4.17 shows a plot of the relative error of the implementation of 𝑉 . The plot covers
all subdomains, both around zero and around infinity. It confirms that the accuracy target
𝜀 = 2−45 is satisfied. Evaluations take 48 to 180 cycles, with most calls in the domain around
zero completing in 60 cycles and most calls around infinity completing in 96 cycles.

4.3.6 Conclusion and Future Work

Our prototype code generator is a step forward towards easier, more adaptive and
widespread implementation of special functions. However, it currently comes with sev-
eral limitations.

First, though we expect it to succeed for all typical examples satisfying the assumptions
laid out in Section 4.3.2, code generation might fail on some functions. Making it work for a
given function may also require some deal of human intervention.

Second, our code generator handles double precision and double/triple-double expan-
sions, but it does not work for any other FP format, let alone, say, fixed-point arithmetic. It
would be interesting to extend it in that direction, perhaps with the help of other existing
code generation backends.

Finally, and most importantly, automatic code generation is currently limited to bounded
domains. A major perspective for future research is to provide automatic support for evalua-
tion near infinity and singularities of the function, similar to what we outlined in the case
of the Voigt profile. This also means extending our framework to handle infinite families of
quasi-regularly spaced zeros in the style of [109].

4.4 Other Metalibm Use-Cases

In Section 4.2, we have presented the general ideas of our open-ended metalibm-lutetia
code generator. In the previous Section 4.3, we have seen how this open-ended code generator
can be used to generate code for functions which are not defined algorithmicly but with
recurrence relations, making them D-finite. In the next Section 4.4.1, we shall first show that
the use of metalibm-lutetia is not reduced to open-ended functions: to this end, we consider
the implementation of vectorized libm functions, i.e. code evaluation a function on each of
the elements of a (small) vector. Then, in Section 4.4.2, we will go one step further and mix
up open-ended metalibm-lutetia and domain-specific metalibm-lugdunum even more, by
combining them into one piece of code where metalibm-lutetia leverages metalibm-lugdunum
for the code generation step required for polynomials.

4.4.1 A Metalibm Experiment: A Vectorized libm

This Section 4.4.1 on the usage of metalibm-lutetia for the implementation of vectorized
functions is based on [157]. Contrary to our expectations, this experiment has led to pretty
high interest from researchers and software engineers, working e.g. on FreeBSD. This interest
has made us disseminate our code with an Open-Source license at https://gitlab.com/
cquirin/vector-libm.

https://gitlab.com/cquirin/vector-libm
https://gitlab.com/cquirin/vector-libm
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Introduction

Operation Systems provide support for mathematical functions such as exp, sin, cos, 𝑥𝑦

through mathematical libraries, commonly called libm. As hardware becomes more and
more parallel, in particular through integration of hardware for floating-point [117] SIMD
instructions, a need for vector libms arises. These parallelized libms work on vectors, applying
the respective mathematical functions in an element-by-element (SIMD-like) manner.

The vector lengths vary: systems may choose to provide only functions for fixed length
vectors, typically for the vectors sizes supported by the underlying SIMD hardware, or they
may provide APIs for arbitrary vector lengths, cutting the vectors into chunks then mapped
onto the SIMD units.

A first advantage of such vectorized libms is to give the user an interface to leverage the
full potential of their SIMD hardware. Second, modern compilers such as gcc 6 have support
for autovectorization, where scalar loops are transformed into SIMD operations and calls to
SIMD-like libm functions. Vectorized libms are hence required as support libraries of modern
compilers.

Vectorized libms are no new idea. Several such libms already exist: Intel’s SVML 7, AMD’s
libm 8, GNU glibc/gcc recent addition libmvec 9 or CERN’s VDT [211]. However, all these
existing libraries have certain shortcomings: some of them are proprietary, which does not
allow them to be used on a wider range of systems. Others are written in assembly, which
also hinders portability. The only library source code is available for, CERN’s VDT, is a mere
adaptation of an existing scalar libm, with no optimization of the underlying algorithms to a
SIMD environment.

In this Section, we present a new Open-Source vector libm that was developed to fill
the gap left by the existing libraries. It was designed with the following goals in mind:
first, our library is written in plain C, making it fully portable and easier to maintain and
inspect. However, the C source is written in a manner that allows a modern compiler such as
gcc to autovectorize the library code to any SIMD hardware unit with reasonable floating-
point support. Second, our library uses newly optimized polynomial approximations [26],
chosen with parallelization in mind. Finally, the library is completely freestanding, i.e. it
does not require a classical scalar libm to handle corner cases of the functions, like libmvec
does for example. This further improves code maintainability and prevents certain issues of
floating-point non-reproducibility.

This Section is further organized as follows: in Section 4.4.1, we analyze properties of
existing vector math libraries. In Section 4.4.1, we give a short overview on the principal
techniques used to implement a mathematical function, such as exp(𝑥), in floating-point arith-
metic. In Section 4.4.1, we describe the autovectorization capabilities of modern C compilers
and identify certain issues arising with classical math function implementation techniques
with respect to autovectorization. In Section 4.4.1, we describe our approach to implement-
ing vectorized math functions, before presenting experimental results in Section 4.4.1. We
conclude on vectorized mathematical libraries with an outlook in Section 4.4.1.

6. https://gcc.gnu.org/
7. https://software.intel.com/en-us/node/583201
8. http://developer.amd.com/tools-and-sdks/archive/libm/
9. https://sourceware.org/glibc/wiki/libmvec

https://gcc.gnu.org/
https://software.intel.com/en-us/node/583201
http://developer.amd.com/tools-and-sdks/archive/libm/
https://sourceware.org/glibc/wiki/libmvec


164 Chapter 4. Floating-Point Code Generation

Existing Vector Math Libraries

As already mentioned, several vectorized libms provided by different parties exist: Intel’s
SVML and VML libraries, AMDs libm, GNU’s libmvec and CERN’s VDT. None of these
existing libraries fully satisfies all users’ needs, in particular in the Open-Source world.

First of all, the libraries provided by Intel and AMD are closed-source and particularly
optimized for each vendor’s hardware. Although libmvec, recently added to the GNU glibc
to support autovectorization in gcc, is Open-Source software, it is not fully portable: as a
matter of fact, the library is provided as an assembly source for x86-64 systems only. Porting
it to other hardware, such as ARM systems is next to impossible. Maintenance and code-
inspection (e.g. to derive bounds on maximum approximation error) are hindered by the
assembly nature of libmvec.

CERN’s VDT library [211] is Open-Source and fully written in high-level languages (C and
C++). It is hence portable across systems and it allows for code maintenance and inspection.
However, VDT is not a full redevelopment: for its core, i.e. the polynomial and rational
approximations of the mathematical functions it implements, it is based on the legacy Cephes
library 10. This means that its developers could not optimize these approximations (in terms
of degree etc.) with respect to vectorization. Finally VDT has a C++ interface, which makes
it unsuitable for certain C-based projects and hinders its use as a support library for a C
compiler.

All existing vector libraries share one common issue: they all depend on a scalar libm
to implement certain special cases of certain functions. For example, most vector libraries
implement the trigonometric functions such as sin(𝑥) only in a limited domain around zero.
For larger input values, they call respective function in the scalar math library. While this
approach is reasonable with respect to performance, as large input values to trigonometric
functions are rare in well-written codes, reproducibility issues may arise for input values
around the limit when the vector library switches from internal handling to calling the scalar
library: the code-base and hence floating-point properties (such as maximum error) for both
implementations of the same mathematical functions are not the same. Reproducibility issues,
such as monotonicity problems, may hence arise. These issues are even more widespread for
non-freestanding vector libms that choose to call the scalar math library for all elements of a
vector, if at least one of the vector elements requires special case handling.

Implementation of Mathematical Functions

The implementation of a mathematical function, such as exp(𝑥), sin(𝑥) or atan(𝑥), in the
floating-point environment provided by IEEE754-2008 has been extensively studied and
described in the literature [32, 52, 65, 90, 165, 197, 239]. Classically, a mathematical function on
a floating-point argument is computed in four or five steps.

In the first step, the inputs are filtered for special values such as infinities or Not-A-Number
data, as well as for numeric input values that lie outside of the function’s definition domain
or surely provoke overflow or underflow. These special inputs are handled appropriately.

All unhandled numeric floating-point inputs proceed to the second step, called argument
reduction step. In this step, algebraic properties of the implemented function, such as
𝑒𝑎+𝑏 = 𝑒𝑎 · 𝑒𝑏 or sin(𝑥 + 2𝑘𝜋) = sin(𝑥), 𝑘 ∈ Z, are used to reduce the domain the function
needs to be actually computed on to some small interval, mostly around zero. In cases when

10. http://www.netlib.org/cephes/

http://www.netlib.org/cephes/


4.4 Other Metalibm Use-Cases 165

the function does not allow for algebraic reduction of its input domain or when the domain
obtained after algebraic argument reduction is still too large, the domain is simply split into
subdomains. Such subdomain splitting gets reflected in the function’s implementation by a
sequence of memory reads and conditional branches.

In the third step, called polynomial approximation step, the function’s value gets approxi-
mated by evaluation of an approximation polynomial. In some cases, a rational approximation
may also be used. This part of the code is fully straight-line but may be optimized in terms of
degree of the polynomial used and of amount of memory to be read in for the polynomial’s
coefficients [26].

In a fourth and final step, the function’s value on its original argument is recovered by
“inverting” the effects of the argument reduction step. This final code sequence commonly is
pretty short.

In cases when addressing a slightly larger (about 8 to 24 kbytes) amount of memory with
indirect addressing is possible, an additional step, executed in parallel with the polynomial
approximation step, called table lookup step, may be used [239]. The use of a lookup table
with precomputed values allows the reduced argument’s domain to be yet smaller, which
decreases the degree of the approximation polynomial and hence evaluation latency.

Leveraging Compiler Support for Autovectorization

In Section 4.4.1, we have expressed our concern with the use of assembly in different
vector libms on the one hand. On the other hand, if we wish to increase portability with the
use of a high-level language to implement a vector libm, we need to find a way to express
the SIMD parallelism in that high-level language. A good compiler can then perform SIMD
instruction selection, hence may avoid us the use of assembly.

With modern C compilers, such as gcc, the SIMD parallelism actually does not need to be
expressed explicitly: when enabling so called autovectorization, the compiler is able to map
scalar code sequences that get executed repeatedly with in a loop onto SIMD instructions. As
a matter of course, both the loop with its length and memory access pattern and the scalar
code inside that loop need to satisfy certain conditions in order to allow the compiler to
perform the autovectorization.

In our use-case, the implementation of mathematical functions, the loop around the scalar
floating-point code is of statically known length (most commonly a small multiple of the
underlying hardware’s native SIMD vector length). The access pattern to the input and output
vectors is strictly linear. Satisfying the compiler’s constraints is easy toward this respect.

The constraints on the scalar code inside the loop are more restricting for our purpose.
We were unable to find any (formal) specification of the actual constraints required by an
autovectorizing C compiler such as gcc but we were able, by experiment, to guess the
following constraints:

— The scalar code inside the loop needs to be free of conditional branches. Conditional
expression evaluation, using the C operator cond ? a : b, is possible in very easy
cases: both expressions are integer constants. This constraint typically has the effect
that argument reduction by domain splitting cannot be used for the implementation of
vector math functions.

— All memory accesses need to be either to a constant address (e.g. to load literal constants)
or to consecutive addresses, linearly depending on the loop variable. Hence it is of
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course possible to read a function’s argument in a vector and to write the function’s
value back to an output vector. The constraint however prohibits the use of lookup
tables for argument reduction, as the index to the lookup table does not merely depend
on the loop variable but on the floating-point values given in the argument vector.

We are going to describe in the next Section an approach we propose for the implementation
of mathematical functions whilst still satisfying these constraints on the code, set out by the
capabilities of autovectorizing compilers.

A Freestanding Vector Math Library

Our goal is to propose a freestanding vector math library, fully written in C, with code that
can be autovectorized with a modern compiler, such as gcc. We strive at providing the most
common functions, namely exp, log, sin, cos, tan, asin, acos, atan, 3

√ in both the IEEE754-2008
binary32 and binary64 format. In this Section, we concentrate on the IEEE754-2008 binary64
format, leaving out the binary32 format. We do this for two reasons: one an autovectorizable
algorithm is known for a function in the binary64 format, transcribing it to the binary32
format is a pure matter of software development. Second, as we are going to explain in more
detail below, a scalar implementation of each function is required as a fallback in certain cases.
While this doubles development work for the binary64 format, performance is not of an issue
for that fallback. The binary32 format can hence reuse the same fallback functions, converting
hence and forth from binary32 to binary64.

A Bird’s Eyes View on the Proposed Algorithms The algorithms in our proposed vector
libm keep the principal structure of an implementation of a mathematical function: special
case handling, argument reduction, polynomial approximation and reconstruction. As set out
in more detail below, no conditional branches are possible inside the loop to be vectorized.
We therefore cut the loop on the vector into two loops.

First, a loop passes over all vector elements and it determines if the corresponding inputs
lie inside the main definition domain of the function. This test is implemented using integer
operations that work on the memory representation of IEEE754-2008 binary floating-point
numbers. The outputs of each vector element’s boolean test result are considered integer
numbers that are summed. Autovectorizing compilers are able to translate this construction
into a vector reduction operation. If at least one of the elements lies outside the main definition
domain of the function, a fallback function is called.

If all vector inputs lie inside the main definition domain of the function, a second loop
is started that will compute the mathematical function in a SIMD-parallel manner. Manual
analysis of the generated assembly shows that no memory accesses to the input vector
are needed for this loop, as the vector elements have already been loaded for the first,
domain-check loop. Inside the function computation loop an argument reduction will first
be performed. That argument reduction is always based on an algebraic property of the
implemented function, at least for the 9 functions currently implemented. No subdomain
splitting is performed, no tables are used. We are going to give more details below.

Polynomial approximation follows argument reduction. Its SIMD autovectorization is
trivial to achieve. The degrees of the used polynomials are pretty high, as the use of no
tables for argument reduction requires the polynomials to be accurate on larger domains.
For certain functions, in particular the inverse trigonometric functions (asin, acos and atan)
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that have either infinite derivatives at one point or derivatives that tend toward zero, we
use more than one approximation polynomial. Their results are then combined in the last,
reconstruction step. We have optimized all our polynomials coefficients using the techniques
described in [26]. None of our polynomials uses coefficients with higher precision than the
working precision, whilst other libraries tend to use floating-point expansions at least for the
coefficients of lower degree [32, 165].

Function reconstruction typically requires no branching nor table access and is hence also
easy to autovectorize. We always restrict the main path of the function to a domain where the
function’s value surely does not underflow. This way, we avoid any handling of subnormals
on the main path, which is to be autovectorized.

We shall signal a particularity of our implementation of the cubic root function 3
√ . We

implement this function as 3
√
𝑥 = 2log8(𝑥) with additional handling for the sign of 𝑥. The

particularity is that we use the sequence of argument reduction, polynomial approximation
and reconstruction twice: once for 𝑧 = log8 𝑥, once for 2𝑧 .

Special Case Handling As mentioned, we call a fallback function to handle special and
other particular cases, such as subnormal inputs, whenever at least one element in the given
input vector lies outside the main definition domain of the function. This general approach
gives convincing results in terms of average performance but requires two parameters to be
determined: first, what the main definition domain of a given function is, and, second, which
SIMD vector length is appropriate for our approach.

The first parameter is pretty easy to determine: for most functions, it is given by their
mathematical definition domain and the properties of the floating-point format –with its
exponent width defined by IEEE754-2008. Only for some functions, typically the trigonometric
functions sin, cos and tan, a choice must be made by design. Essentially, their argument
reduction 𝑟 = 𝑥− 𝑘 · 𝜋 with 𝑘 the integer nearest to 𝑥/𝜋 becomes increasingly harder for 𝑥
becoming larger in terms of required working precision. Specialized argument reduction
schemes, such as Payne-Hanek argument reduction [207], exist for large input values 𝑥. Their
SIMD parallelization is hard to achieve. In contrast, large input values to trigonometric
functions are not quite common in scientific codes. It is hence reasonable to handle only a
certain main definition domain around zero in a SIMD vectorized manner and to handle all
other (larger) inputs only in the scalar fallback code. We chose to handle inputs 𝑥 smaller
in magnitude than

(︀
214 − 1

)︀
· 𝜋 on the main path and to perform Payne-Hanek argument

reduction only in the scalar fallback function. This choice is motivated by error analysis but it
stays a somewhat arbitrary design decision.

The second parameter to determine with respect to our approach to special case handling
is the vector length. Our approach is to call a fallback function as soon as at least one of the
input vector elements does not lie in the main evaluation domain. That fallback code is not
SIMD-parallelized and hence significantly slower. The average performance of our vector
functions is hence determined by two parameters: the probability 𝑝 to encounter an out-of-
main-domain input (among a supposedly large number of inputs) and, of course, the vector
length 𝑛. With 𝑛 increasing, the probability for the main-domain SIMD-parallelized code to
be used becomes lower, typically (1 − 𝑝)𝑛. Further, when the fallback function gets called,
with increasing vector length 𝑛, its evaluation time increases. In contrast, when no fallback is
necessary, the SIMD-parallelized function typically gets more efficient with increasing vector
length, as most compilers are able to interleave several SIMD evaluations, to make them
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run simultaneously. As the probability 𝑝 of out-of-domain inputs is typically unknown, it
is hard to answer that second question of determining the vector length 𝑛. We performed
some experiments with some assumptions on the distribution of floating-point numbers,
in particular equidistribution of the exponents. We could determine that a vector length of
𝑛 = 8 seems to be most efficient on average. Anyway, as our code is written in a high-level
language, adapting it to other vector lengths is pretty easy.

Avoiding the Use of Lookup Tables The constraint that code to be autovectorized must
not use any indirect memory accesses, where the addresses depend on the input vector,
implies that we may not use any lookup tables in our implementations. This has several
consequences:

Most approaches for argument reduction found in the literature for the implementation
of mathematical functions do use tables [65, 239]. We have to revise the argument reduction
techniques. For certain functions, this may involve nothing but dropping the table lookup
step, increasing the interval the reduced argument may fall in and hence increasing the degree
of the approximation polynomial. The functions exp(𝑥) and log(𝑥) are examples for this
situation.

For other functions, like cos(𝑥), not having access to lookup tables –combined with the
required avoiding of conditional branches– requires overcoming issues of computing and
writing evaluation code for polynomials approximating a function that has a zero elsewhere
than at zero. However, approaches for this issue do exist [163].

Finally, some other functions, like asin(𝑥), acos(𝑥) or atan(𝑥), have derivatives that become
infinite at some point or that tend towards zero for the input argument going to infinity. In
these cases, using polynomials for approximation is most inappropriate. Classical argument
reduction techniques for these functions with lookup tables try to hide the singularities of the
derivatives in the tables. For our work, we had to find other argument reduction schemes.
The guiding idea is that an accurate evaluation of the inverses of these tricky functions is
easy to obtain with polynomial approximation and evaluation. Argument reduction may
hence proceed as follows: first evaluate a low-degree polynomial approximation of the direct
function, yielding a pretty inaccurate result. Then compute an accurate approximation of
the inverse function at the point found by the inaccurate approximation. Last compute a
reduced argument out of the original evaluation point and the result of the inverse function
evaluation. Finally accurately evaluate the function of the reduced argument, which will be
bounded in magnitude by some upper bound related to the accuracy of the initial inaccurate
approximation.

Example: Implementation of the Logarithm Function Let us now detail the implemen-
tation of the logarithm function as an example for the functions in our vector libm. The
function log 𝑥 is defined for all inputs 𝑥 > 0. On output, it may not produce any underflow
nor overflow [65].

We remove the handling of subnormal input from the main path: the test loop checking
whether special case handling is required tests whether all IEEE754-2008 binary64 inputs 𝑥
are between 2−1021 and 21023 ·

(︀
2− 2−52

)︀
(bounds included). Since we implement this test

with two integer comparisons on the IEEE754-2008 memory representation, the same test
eliminates all zeros, infinities and Not-A-Numbers as well.

All inputs 𝑥 in that range are then split into an exponent 𝐸, stored on an integer variable,
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Function Vector libm System libm Vector libm Speed-up
max error cycles cycles
in ulps per element per element

exp 2.6695 37.6832 10.7050 252%

log 1.0825 51.9903 29.5193 76.1%

sin 2.3300 236.8824 164.1783 44.2%

cos 2.4221 232.6561 198.5054 17.2%

tan 3.0352 262.3415 218.0489 20.3%

asin 4.9627 21.0550 13.8167 52.3%

acos 2.4031 19.3828 15.2912 26.7%

atan 2.1013 22.0204 7.8097 181.9%

cbrt 1.1638 47.8003 27.3462 74.7%

Table 4.2 – Measured maximum error of vector libm and measured performance of system
and vector libm

and a significand 𝑚, stored on an IEEE754-2008 binary64 variable, such that 𝑥 = 2𝐸 ·𝑚 and
0.75 6 𝑚 < 1.5. The uncommon range for the significand 𝑚 between 0.75 and 1.5 requires
extra work but allows a catastrophic cancellation to be avoided [65]. It is possible to perform
that split of the input 𝑥 into the exponent 𝐸 and the significand 𝑚 without using branches,
merely with integer operations on the IEEE754-2008 memory representation, even when
targeting the uncommon significand range between 0.75 and 1.5.

A constant value of 1 is then subtracted from the significand 𝑚, yielding 𝑟 = 𝑚− 1. This
subtraction does not provoke any rounding, as per Sterbenz’ lemma. The argument of the
logarithm function is hence reduced as follows:

log 𝑥 = 𝐸 log 2 + log (1 + 𝑟) ,

where 𝑟 varies in the interval 𝑟 ∈ [−0.25; 0.5].
On this domain, the function log (1 + 𝑟) can be replaced by a polynomial 𝑝(𝑟) of degree 20

to achieve the required accuracy for IEEE754-2008 binary64.
Reconstruction involves converting the exponent 𝐸, originally represented on an integer

variable, to a IEEE754-2008 variable and multiplying it by the constant log 2. The conversion
is performed using the appropriate machine instruction, available in most SIMD instruction
sets. It is expressed as a cast in C and it runs in parallel with polynomial evaluation. The
constant log 2 is stored with some extra precision as an unevaluated sum of two IEEE754-2008
numbers with some zero trailing bits in their significand to make the multiplication by the
exponent 𝐸 exact.

Experimental results

The vector libm we propose was developed targeting a maximum error of the functions
of at most 8ulp with respect to the corresponding precision of the function. While this target
means that our functions are clearly less accurate than standard scalar libms, which commonly
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provide correct rounding [66, 117, 165], it corresponds well with the accuracy requirements of
High-Performance Computing e.g. for Physics [211]. In any case, providing correct rounding
for vectorized transcendental functions is extremely hard, due to the divergence of the
execution paths in the different SIMD slots created by the rounding test [66]. Non-exhaustive
measurements show that our library fulfills that accuracy target. Most functions actually have
a maximum error below 5ulp (see Table 4.2).

Concerning performance, the speed-up (in terms of cycles per element computed) pro-
vided by our library, compiled with gcc 6.3.0, compared with respect to a scalar libm, for
instance the GNU glibc 2.24-11 running Debian 4.9.0-3-amd64 on a x86-64 Intel i7-5500U at
2.4GHz, is pretty convincing: for certain functions, such as exp(𝑥) we obtain a speed-up of up
to 252%. For certain functions, like cos(𝑥), which we optimized less, we obtain a speed-up
of at least 17.2%. See Table 4.2 for details. Additional experiments showed that about half
of the speed-up is due to a better utilization of the hardware (SIMD processing, decreasing
function call overhead etc.); the other half stemming from optimization of the approximation
polynomials.

Conclusion and Future Work

We presented a vectorized mathematical library (libm) that is fully implemented in
modern C, allowing for good code maintenance and portability. The library is Open-Source,
which is not commonly the case for its competitors. It provides reasonable speed-up with
respect to a scalar libm, attaining up to 252% of speed-up per vector element. It is fully
free-standing as it does not require any scalar libm as a support library. The maximum error
of the functions provides stays well below 8ulp, corresponding to accuracy requirements of
High Performance Computing.

As it stands now, the library is not fully completed with respect to the functions provided
by a classical scalar libm. We currently concentrated our efforts on the IEEE754-2008 binary64
format. We still need to derive an implementation of the functions for IEEE754-2008 binary32
format from the algorithms we proposed. Research and design work are also ongoing for
certain functions that are hard to implement in a vectorized manner, such as the power
function 𝑥𝑦, the bi-variate arctangent atan

(︀ 𝑦
𝑥

)︀
or the Gaussian error function erf(𝑥).

4.4.2 Uniting with other Code Generators for Enhanced Performance

In the previous Section 4.4.1, we have seen how metalibm-lutetia can be leveraged for
the practical implementation of classical, mathematical functions in a vectorized manner.
As explained in Section 4.2, code generation for classical functions is more application spe-
cific and hence the predilect field of application of metalibm-lugdunum, a “competitor” to
our metalibm-lutetia. In this Section 4.4.2, we are going to blur the borders between the
open-ended metalibm-lutetia and the domain specific metalibm-lugdunum even more: we
will show how we can unite with metalibm-lugdunum –and yet another tool, CGPE– for im-
proved code generation for polynomials, replacing metalibm-lutetia’s Horner-scheme based
polynomial code generator, which ten-year old legacy code now [165], by a more powerful
tool. This Section is based on an article we have recently come up with. We intend to publish
it soon.
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Introduction

Nowadays, scientific computing is more and more important, and achieving high per-
formance requires the development of programs using at best the specificities of modern
architectures, especially vector architectures, and manipulating data and operations whose
formats have been adapted just right. Concerning the implementation of mathematical func-
tions, a critical part is the polynomial evaluation which is the heart of such programs, whose
precision must be controlled to ensure a given output accuracy, and whose efficiency greatly
impacts the efficiency of the whole implementation. In this Section, we address the auto-
mated development of polynomial evaluation programs, where (1) an evaluation scheme is
selected so that its level of parallelism fits at best the capabilities of the underlying architec-
ture, and (2) where operation formats are chosen to guarantee the overall error is no greater
than a user-defined error bound, while maintaining high performance.

Many projects have been carried out to assist with the efficient and accurate implementa-
tion of mathematical functions. On the first hand, regarding parallelism exploitation, let us
cite CGPE [194, 218]. This tool performs automatic generation of parallel codes for evaluating
polynomials, sums, and dot-products with sufficient accuracy to ensure that evaluation error
is no greater than a given bound. But it does not provide a format adaptation step, and the
generation process may fail if the bound to reach is too tight. Another relevant tool is Sar-
dana [121], whose goal is to rewrite expressions, in order to improve accuracy of the output,
but without any constraint on the parallelism of the resulting expression. Note, as shown
in Section 4.4.2, CGPE’s strength is its ability to explore part of the scheme space, returning
quickly the more parallel ones. On the other hand, regarding accuracy handling, relevant
tools are Sollya [41] and Gappa [188]. Indeed Sollya allows polynomial approximation to be
performed with floating-point coefficients and rigorous approximation error bounds, while
Gappa uses rewriting rules and interval arithmetic to bound the roundoff errors entailed by
the evaluation of a floating-point program.

More generally, tools already exist that have been designed to directly tackle the whole
function implementation process. This is the case of Metalibm-lutetia [145, 165], presented
in Section 4.4.2. This tool implements various range reduction techniques (symmetry and
periodicity detections, domain splitting, . . . ) and relies on the classical Horner scheme to
produce code for evaluating a given function using only binary64 (single or multiple word)
floating-point arithmetic [117]. The formats of all the operations have been chosen to ensure
a given accuracy, that may be checked a posteriori using Gappa. Another paradigm is fol-
lowed by the Metalibm-lugdunum project [32], an advanced code generator presented in
Section 4.4.2. The range reduction is described in a Python-like syntax, and this framework
provides back-ends for various (micro-)architectures. It includes automatic code transforma-
tion to generate high performance vector codes from scalar description. Note it has already
been used in the context of fast mathematical function implementation [33].

Our goal is to extend the Metalibm-lutetia approach, and to provide a framework to
implement mathematical functions at a given accuracy, and exploiting at best the underlying
architecture parallelism. Therefore the main contributions of the work presented in this
Section are:

— The use of schemes exposing more parallelism than the one offered by the Horner
scheme, and obtained using CGPE.

— A new and more rigorous way to determine operation formats and to detect cancel-
lations, considering parallel expressions, and allowing to produce code accurate by
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construction, for which Gappa certificate is not required anymore.

— The use of an “opaque” data type, thus improving the genericity of the approach, and
leaving the possibility to extend this work to any other IEEE floating-point formats.

— The integration of this new approach in the Metalibm-lugdunum framework, allowing
for high performance implementations.

Uniting with Other Tools

In this Section, we will shortly review the Metalibm-lutetia approach, and describe other
tools, striving at identifying interfaces for possible enhancements.

Metalibm-lutetia: range reduced polynomial approximation Metalibm-lutetia is a soft-
ware tool for automatic code generation for mathematical functions [32]. Its strengths are in
the manner the functions to be implemented are represented by the tool: Metalibm-lutetia
considers them as black-box objects with a very limited interface, typically simple evaluation
over small intervals [32, 145]. It works under the premise that the user does not need to sup-
ply any indications on the algorithmic scheme to be used to implement the function. This
allows code generation with Metalibm-lutetia for functions defined in an non-algorithmic
way, e.g. by a differential equation or as an inverse of another function [163].

The Metalibm-lutetia code generator achieves its goal by an analysis of the given function’s
properties, geared towards exploitation with floating-point arithmetic, typically by reducing
the range of the function’s input based on these properties. It is able to detect and produce
range reduction code for symmetrical functions (such as sinh), periodic functions (such as sin),
functions with additive range reduction (such as exp), functions with multiplicative range
reduction (such as log) as well as functions with certain patterns of asymptotic behavior (such
as sinh, eventually behaving like 𝑒𝑥) [32, 145]. If no other range reduction method can be
found with this detection process, it resumes to splitting the input interval into sufficiently
small subintervals, allowing for polynomial approximation on each subinterval [147].

For the core function to be implemented on each small range-reduced interval, Metalibm-
lutetia is able to perform polynomial approximation, optimized with respect to the use of
floating-point numbers as the coefficients of the approximation polynomials. For this step,
it leverages the basic building bricks integrated into the Sollya tool, such as an implemen-
tation of the Remez algorithm [38, 41, 214] and a variant for approximation floating-point
coefficients, commonly called fpminimax [26, 38]. Metalibm-lutetia enhances these basic
bricks by a floating-point format optimization, trying to find an approximation polynomial
with a minimum number of floating-point values in expansions used for the polynomial’s
coefficients [165].

The existing Metalibm-lutetia tool, as described in [145], is already able to generate code
for the approximation polynomials it generates. For this step, it uses legacy code integrated
in the Sollya tool, able to generate code for the Horner evaluation scheme, using only the
three formats binary64, double-binary64 and triple-binary64 [164, 165]. This legacy, hard-
to-maintain, format-specialized polynomial code generator is the part of Metalibm-lutetia
that the work presented in this Section strives at replacing with an optimized, generic code
generation algorithm, suitable not only for Metalibm-lutetia but also other tools.
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CGPE: polynomial evaluation scheme generation In Metalibm-lutetia, for each subinter-
val, a polynomial is built and an evaluation program is designed where the polynomial is
evaluated using Horner scheme. Indeed this scheme is classically used when implementing
mathematical functions [57]. The interest of using such evaluation scheme is twofold: (1)
this has good numerical property especially when the polynomial is evaluated not too close
to a zero of the polynomial [19], and (2) it minimizes the number of additions and multipli-
cations [138, p. 519]. However, Horner scheme is fully sequential, and for achieving high
performance, we prefer schemes exposing more parallelism, like Estrin scheme.

In this sense, CGPE has been designed to explore the space of evaluation schemes, and es-
pecially those for evaluating polynomials. Particularly, CGPE (standing for Code Generation
for Polynomial Evaluation) is a software tool to generate fast and certified programs for eval-
uating polynomial [194, 218]. Initially designed to produce codes in fixed-point arithmetic, it
has been widely used in the development of the FLIP library, and is now capable of handling
floating-point arithmetic.

Internally, CGPE behaves like a compiler with an architecture including (1) a front-end,
computing DAG representing polynomial evaluation schemes, (2) a middle-end, performing
analyses (like fixed-point format determination) and error bound computations, and (3) a
back-end in charge of producing codes in different languages or architecture description. The
work presented here relies on its front-end only. Indeed its middle-end does not embrace
precision adaptation process, which is the heart of our work, since it simply checks if a
given target evaluation error is satisfied. Moreover its back-end does not provide capabilities
for targeting vector architectures, and we prefer leaving this step to Metalibm-lugdunum
presented in Section 4.4.2 which provides such capabilities to take benefit from different
modern vector architectures.

The main issue of using CGPE comes from the explosion of the search space of evaluation
schemes [194]. In order to reduce these combinatorics, CGPE uses heuristics for degree greater
than 6. However these heuristics might be inefficient when the polynomial degree grows, and
we switch to classical schemes like Estrin as soon as polynomial degree gets greater than 12.

MetaLibm-lugdunum: back-end and code generation Metalibm-lugdunum (MLLug) is a
code generator dedicated to the generation of mathematical function. It consists of:

— a domain specific language: the Metalibm Description Language (MDL),
— a set of middle-end optimization passes,
— a set of back-ends able to emit machine-specific code.

Based on Python, the MDL is expressive enough to allow for the precise description of the
implementation of an elementary function. This description is processed by a configurable
pipeline of optimization passes which is architecture agnostic. Those passes translate the
MDL description into a reduced form which is then processed by one of the available back-
ends (which include different flavors of x86, Kalray’s K1). This back-end translates the MDL
intermediate representation (IR) into a compilable source code while selecting architecture
specific implementations (e.g. intrinsics). The versatility of this IR permits static code
transformation such as vectorization or inline (if-conversion, . . . ) very easily.

The strength of MLLug resides in its expressive domain specific language, its parametriz-
able optimization pipeline, and the fact that it splits middle-end consideration from target
specific code generation, allowing for several range of independent optimization and imple-
mentation selections.
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Generic implementpoly: theoretical aspects

This Section presents the theoretical aspects of our work, and particularly the way used to
compute target error bounds and to handle cancellations.

Problem statement Let us now precisely state the problem we consider in this Section:
given a univariate polynomial 𝑝 ∈ R[𝑥] with real or floating-point coefficients, an interval
𝐼 = [𝑎, 𝑏] with finite bounds 𝑎, 𝑏 ∈ R, as well as a so-called positive target error 𝜀 ∈ R+, our
objectives are:

— We want to generate floating-point code for a function 𝑃 , such that for every floating-
point input 𝑥 ∈ 𝐼 , there exists 𝜀 ∈ R such that

𝑃 (𝑥) = 𝑝(𝑥) (1 + 𝜀) , with |𝜀| 6 𝜀. (4.19)

In other words, we want the relative error of the generated code to be bounded by 𝜀.

— We want the generated code be optimized in terms of performance, for a given com-
puter architecture and the floating-point formats sensibly usable on that architecture,
leveraging both the power of CGPE and Metalibm-lugdunum. Typically, we want the
CGPE-provided polynomial evaluation scheme to exhibit sufficient opportunities for
parallelism to possibly fully exploit the instruction-level parallelism of the considered
architecture. A model of the architecture and the usable floating-point formats becomes
an additional input of our code generation algorithm, typically captured as a code gen-
eration context. We will model the optimization of the generated code typically by an
optimization of the number of operations possibly able to run in parallel for different
polynomial evaluation schemes.

— We want the code generator to be rigorous in the sense that when it reports a code
generation success, the code must rigorously and provably satisfy the constraint given
by Eq. (4.19). In order to allow this property to be proven formally, we want our
generator to produce, along with the code, a Gappa proof script [188] able to exhibit the
fact that Eq. (4.19) is satisfied by the generated code.

— In cases when the code generator needs to round certain coefficients of the polynomial 𝑝
to allow for actual implementation on a certain floating-point architecture, for instance
when the coefficients of 𝑝 are real numbers that are not representable as floating-point
numbers, we want the code generator to report the actual polynomial ̃︀𝑝 implemented.
This allows higher-level code generators like Metalibm-lutetia to take the difference
between 𝑝 and the actual polynomial ̃︀𝑝 into account.

Target error bound computation Once an evaluation scheme is fixed –on output of CGPE–
for a certain polynomial 𝑝, we need to find a way to distribute the error “budget” which the
target error 𝜀 gives us for the rounding errors in its evaluation, over the different operations.
Technically, in this phase, the polynomial 𝑝, together with its evaluation scheme, is represented
as a tree; our task is to distribute the target error 𝜀 over the operations at the nodes –and
leaves, as we shall see– of that tree.

Under a different angle, the various elementary rounding errors due to the operations in
the tree combine to form an overall error. This combination is of course not linear; certain
sub-errors may get amplified or attenuated. When distributing the overall target error in a
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recursive manner over the tree, our task is to predict the different amplification factors in
such a way that those operations’ elementary errors which get amplified most get most out of
the target error budget, or, similarly, that all elementary errors, after amplification, appear for
the same amount in the overall, combined error term. This error term needs to enclose also
the second and high-order error terms in order to allow for a fully rigorous approach.

A first step in distributing the target error 𝜀 ∈ R+ over 𝑘 elementary errors 𝜀𝑖 ∈ R+, each
of which gets amplified resp. attenuated by a factor �̄�𝑖 ∈ R+ in such a way that

𝑘∑︁

𝑖=1

�̄�𝑖 𝜀𝑖 6 𝜀

is to determine the number 𝑘 of elementary rounding errors. In order to do so, we need to
identify the possible sources of rounding error in a polynomial’s evaluation: as matter of
course, the addition and multiplication operations form sources of error. As we consider
multi-word arithmetic with floating-point expansions [164, 165], the elementary rounding
error bound for each addition and multiplication is not always the same; it is rather given by
the format of the operation’s operands and the format of the output of that operation. We shall
detail this point below. But once we look at multi-word arithmetic, we must also consider the
point 𝑥 the polynomial 𝑝 is evaluated at as a multi-word floating-point datum. Similarly, we
must consider the coefficients of the polynomial to be stored on such multi-word floating-
point data. Doing so, we discover two additional sources of error: whenever they occur in
the polynomial evaluation scheme’s associated tree, the point 𝑥 and the coefficients might be
considered to be exact but they may also be truncated to a shorter multi-word datum in order
to allow for more performance in evaluation. This truncation yields to an error; we shall
hence also take into account the elementary rounding error due to the operations accessing
the variable 𝑥 and the coefficients of the polynomial. Finally, considering a polynomial with
its scheme as a tree is a slight oversimplification: the schemes exhibiting the best chances
for parallel evaluation often work on sub-polynomials expressed in terms of powers of the
variable 𝑥, such as 𝑥2 or 𝑥4. These powers 𝑥𝑡 of the variable 𝑥 may appear several times in
the polynomial’s evaluation “tree”, which is technically speaking a directed acyclic graph
(DAG). For target error distribution purposes with multi-word arithmetic, we must hence
consider a source of error for these powers of 𝑥, too.

Thus, we are given a tree with leaves formed by constants for coefficients, accesses to
the variable 𝑥, and accesses to powers 𝑥𝑡 of the variable 𝑥, while inner nodes are formed by
additions and multiplications. We strive at distributing the target error budget evenly over
the amplified elementary errors. We therefore perform a first traversal of the tree and allocate
what we call rounding error units to each of the nodes of the tree: the leaves are annotated
with

— 𝑘 = 1 rounding error unit for the coefficients,

— 𝑘 = 1 rounding error unit for the variable 𝑥,

— 𝑘 = ⌈log2 𝑡⌉ rounding error units for the power 𝑥𝑡, 𝑡 > 2.

The inner nodes are annotated with 𝑘 = 𝑘𝑙 + 1 + 𝑘𝑟 rounding error units for an addition or a
multiplication of a left and a right sub-tree that get annotated with 𝑘𝑙 resp. 𝑘𝑟 rounding error
units.

In a second step, we can then distribute the target error 𝜀 over the different amplified
elementary errors in the tree, guided by the already available rounding error units, which
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indicate the fraction the amplified elementary error should take out of the budget. A second
tree traversal is performed; for the leaf nodes, the recursively propagated target error 𝜀 is
taken as is:

— a coefficient is rounded with the elementary error bound 𝜀,

— an instance of an access to the variable 𝑥 is performed with an elementary error bound
𝜀 and, still similarly,

— an access to a power 𝑥𝑡 of the variable 𝑥 is performed with the full target error 𝜀.

For the inner nodes, on which an addition or a multiplication is considered, some more work
is needed: suppose we work with relative error bounds for the evaluation of a polynomial 𝑝
at 𝑥.

— If an inner node is of multiplication type and 𝑘 = 𝑘𝑄 + 1 + 𝑘𝑅 rounding error units have
been allocated at this step, we have to analyze the error of evaluating a polynomial
𝑝(𝑥) = 𝑞(𝑥) × 𝑟(𝑥) by first evaluating 𝑞(𝑥) to a floating-point approximation 𝑄(𝑥) =
𝑞(𝑥) (1 + 𝜀𝑄(𝑥)) and 𝑟(𝑥) to a floating-point approximation 𝑅(𝑥) = 𝑟(𝑥) (1 + 𝜀𝑅(𝑥))
and then multiplying 𝑄(𝑥) and 𝑅(𝑥) with a rounding error to obtain 𝑃 (𝑥) as an approx-
imation of 𝑝(𝑥): 𝑃 (𝑥) = 𝑄(𝑥)⊗𝑅(𝑥) = 𝑄(𝑥)×𝑅(𝑥) (1 + 𝜀𝑀 (𝑥)). Again, we know that
𝑘𝑄 rounding error units have been allocated to the evaluation of 𝑞 and 𝑘𝑅 for 𝑟. We get

𝑃 (𝑥) = 𝑄(𝑥)×𝑅(𝑥) (1 + 𝜀𝑀 (𝑥))

= 𝑞(𝑥)× 𝑟(𝑥)

(1 + 𝜀𝑄(𝑥)) (1 + 𝜀𝑅(𝑥)) (1 + 𝜀𝑀 (𝑥))

= 𝑝(𝑥) (1

+ (1 + 𝜀𝑅(𝑥)) (1 + 𝜀𝑀 (𝑥)) 𝜀𝑄(𝑥)

+ (1 + 𝜀𝑀 (𝑥)) 𝜀𝑅(𝑥)

+ 𝜀𝑀 (𝑥))

, 𝑝(𝑥) (1 + 𝜀𝑃 (𝑥)) .

By allocating, out of the target error 𝜀 for this step, 𝜀𝑀 , 1
𝑘 𝜀 as a target error for the

multiplication operation and

𝜀𝑅 ,
𝑘𝑅
𝑘

1

1 + 𝜀𝑀
𝜀

and 𝜀𝑄 ,
𝑘𝑄
𝑘

1

(1 + 𝜀𝑅) (1 + 𝜀𝑀 )
𝜀

for the two recursive calls for the target error distribution on the trees for 𝑞 and 𝑟, we
ensure that |𝜀𝑄(𝑥)| 6 𝜀𝑄 and |𝜀𝑅(𝑥)| 6 𝜀𝑅 for all 𝑥 in the considered domain 𝐼 . We
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therefore obtain the desired bound for 𝜀𝑃 (𝑥):

|𝜀𝑃 (𝑥)| = |(1 + 𝜀𝑅(𝑥)) (1 + 𝜀𝑀 (𝑥)) 𝜀𝑄(𝑥)

+ (1 + 𝜀𝑀 (𝑥)) 𝜀𝑅(𝑥)

+𝜀𝑀 (𝑥)|

6
𝑘𝑄

𝑘𝑄 + 1 + 𝑘𝑅

|(1 + 𝜀𝑅(𝑥)) (1 + 𝜀𝑀 (𝑥))|
(1 + 𝜀𝑅) (1 + 𝜀𝑀 )

𝜀

+
𝑘𝑅

𝑘𝑄 + 1 + 𝑘𝑅

|1 + 𝜀𝑀 (𝑥)|
1 + 𝜀𝑀

𝜀

+
1

𝑘𝑄 + 1 + 𝑘𝑅
𝜀

6 𝜀.

— If the inner-node is of addition type, i.e. when 𝑝(𝑥) = 𝑞(𝑥) + 𝑟(𝑥), the target error
distribution process is quite similar but the error on 𝑄(𝑥) = 𝑞(𝑥) (1 + 𝜀𝑄(𝑥)) and
𝑅(𝑥) = 𝑟(𝑥) (1 + 𝜀𝑅(𝑥)) get amplified each by a factor, which we need to bound. With
𝑃 (𝑥) = 𝑄(𝑥)⊕𝑅(𝑥) = (𝑄(𝑥) +𝑅(𝑥)) (1 + 𝜀𝐴(𝑥)) , 𝑝(𝑥) (1 + 𝜀(𝑥)), we obtain

𝜀(𝑥) = 𝜀𝐴(𝑥)

+ (1 + 𝜀𝐴(𝑥))
𝑞(𝑥)

𝑝(𝑥)
𝜀𝑄(𝑥)

+ (1 + 𝜀𝐴(𝑥))
𝑟(𝑥)

𝑝(𝑥)
𝜀𝑅(𝑥)

, 𝜀𝐴(𝑥) +

(1 + 𝜀𝐴(𝑥)) 𝛼𝑄(𝑥) 𝜀𝑄(𝑥)

+ (1 + 𝜀𝐴(𝑥)) 𝛼𝑅(𝑥) 𝜀𝑅(𝑥).

Let us assume we can compute finite bounds �̄�𝑄 ∈ R+ and �̄�𝑅 ∈ R+ on the maximally
possible amplification factors 𝛼𝑄(𝑥) and 𝛼𝑅(𝑥), i.e. bounds such that

‖𝛼𝑄‖𝐼∞ 6 �̄�𝑄 and ‖𝛼𝑅‖𝐼∞ 6 �̄�𝑅.

It is then easy to show that the following distribution of the target error 𝜀 over the
addition and the two sub-polynomials yields to a valid bound for |𝜀(𝑥)| 6 𝜀 for all 𝑥 in
the considered domain 𝐼 :

𝜀𝐴 ,
1

𝑘
𝜀,

𝜀𝑄 ,
𝑘𝑄
𝑘

1

1 + 𝜀𝐴

1

�̄�𝑄
𝜀,

and 𝜀𝑅 ,
𝑘𝑅
𝑘

1

1 + 𝜀𝐴

1

�̄�𝑅
𝜀.

Computing finite and tight but rigorous bounds for 𝛼𝑄(𝑥) = 𝑞(𝑥)
𝑞(𝑥)+𝑟(𝑥) and 𝛼𝑅(𝑥) =

𝑟(𝑥)
𝑞(𝑥)+𝑟(𝑥) is possible and pretty easy when 𝑝(𝑥) = 𝑞(𝑥) + 𝑟(𝑥) has no zero in the domain
𝐼 other than where 𝑞(𝑥) or 𝑟(𝑥) have a zero. In other words, finite bounds exist and are
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readily computed when no catastrophic cancellation can occur on the floating-point
addition between 𝑄(𝑥) and 𝑅(𝑥).
Technically, rigorous bounds on the rational functions 𝛼𝑄(𝑥) and 𝛼𝑅(𝑥) can be obtained
using Sollya’s facilities to manipulate and analyze polynomials: similarly to what has
been used in [40, 253], we bound a rational function 𝑓/𝑔, 𝑓, 𝑔 ∈ R[𝑥], over an interval
𝐼 = [𝑎, 𝑏] by first reducing the rational function to its least terms, leveraging Sollya’s
support to compute gcd(𝑓, 𝑔), then exclude possible poles why determining that 𝑔
has no zero over 𝐼 , using implementation of Sturm’s theorem [40, 41], tightly enclose
all the zeros of 𝑓 ′𝑔 − 𝑓𝑔′ with thin intervals using a zero search and again Sollya’s
implementation of Sturm’s theorem and finally evaluate 𝑓/𝑔 over all these intervals as
well as at 𝑎 and 𝑏.

Cancellation detection and absolute error bounds In the case when a polynomial 𝑝 is of
the form 𝑝(𝑥) = 𝑞(𝑥) + 𝑟(𝑥) and it has a zero at some point 𝑥0 where 𝑞(𝑥) and 𝑟(𝑥) have
no zero, the amplification factors 𝛼𝑄(𝑥) = 𝑞(𝑥)/𝑝(𝑥) and 𝛼𝑅(𝑥) = 𝑟(𝑥)/𝑝(𝑥) have no finite
bound, due to the pole at the zero of the polynomial 𝑝. This situation describes the case
of a catastrophic cancellation on the addition of 𝑞(𝑥) and 𝑟(𝑥). Since 𝑞(𝑥) and 𝑟(𝑥) cannot
generally be computed exactly, this infinite error amplification means that no accuracy would
be left after the cancellation. We hence need to detect these cases and address them separately.

Detection of the case is actually pretty simple: when trying to bound 𝛼𝑄 and 𝛼𝑅, we
anyhow check that their denominator polynomial 𝑞 has no zero in the considered interval
𝐼 . We can then stop the recursive relative target error distribution process described in the
previous Section 4.4.2.

Sometimes an easy way to address cases of cancellation is to just consider another polyno-
mial evaluation scheme which might not offer as much possible parallelism but, in contrast,
might be free of cancellation cases. We implemented this fallback as one of the solutions our
code generator considers.

However, for certain polynomials, even the Horner scheme, fully sequential and offering
no opportunity for parallelism, contains cancellation cases. In order to allow at least one
evaluation scheme to be used in implementation, we need to find other ways to support
cancellation.

Even if no general solution exists, sometimes it helps to consider absolute error bounds
for the polynomial and its subpolynomials. Suppose we can discover, sufficiently close to
the root of the polynomial’s evaluation scheme tree, a (sub-)polynomial 𝑠 that has no zero in
the considered interval 𝐼 . Suppose the recursive relative target error distribution algorithm
presented in the previous Section requires 𝑠 to be implemented with a relative target error
𝜀𝑆 > 0. As 𝑠 has no zero in the interval 𝐼 , we can compute a non-zero lower bound 𝑠 on |𝑠(𝑥)|,
valid for all 𝑥 ∈ 𝐼 :

0 < 𝑠 < |𝑠(𝑥)| , ∀𝑥 ∈ 𝐼.
If we now find a way to implement 𝑠 with an absolute target error bound 𝛿 , 𝜀𝑆 𝑠 > 0, we
obtain

𝑆(𝑥) = 𝑠(𝑥) + 𝛿(𝑥)

where |𝛿(𝑥)| 6 𝛿 = 𝜀𝑠 𝑠, ∀𝑥 ∈ 𝐼 , and hence

𝑆(𝑥) = 𝑠(𝑥)

(︂
1 +

𝛿(𝑥)

𝑠(𝑥)

)︂
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where 𝛿(𝑥)
𝑠(𝑥) is upper bounded in magnitude (for all 𝑥 ∈ 𝐼) by

⃒⃒
⃒⃒𝛿(𝑥)

𝑠(𝑥)

⃒⃒
⃒⃒ 6 |𝛿(𝑥)|

𝑠
6
𝜀𝑆 𝑠

𝑠
= 𝜀𝑠

as desired. Computing a lower bound 𝑠 is pretty easy, using again Sollya’s numerical zero
finders on 𝑠′ and ensuring that all roots of 𝑠′ have be enclosed using Sturm’s theorem.

This way we reduce the implementation of 𝑠 with a relative target error of 𝜀 to an imple-
mentation of 𝑠 with an absolute target error of 𝛿. With an absolute target error, catastrophic
cancellation is no longer an issue: we can modify the recursive target error distribution
procedure as follows:

— For an addition 𝑝(𝑥) = 𝑞(𝑥) + 𝑟(𝑥), an absolute target error 𝛿 can be distributed in the
following way:

𝛿𝐴 ,
1

𝑘
𝛿, 𝛿𝑄 ,

𝑘𝑄
𝑘
𝛿, and 𝛿𝑅 ,

𝑘𝑅
𝑘
𝛿.

Inhere, 𝑘𝑄 and 𝑘𝑅 are the rounding error unit counts for the subpolynomials 𝑞 and 𝑟,
𝑘 = 𝑘𝑄 + 𝑘𝑅 + 1 the rounding error count for 𝑝, 𝛿𝐴 an absolute error bound for the
floating-point addition of 𝑄(𝑥) and 𝑅(𝑥) and 𝛿𝑄 and 𝛿𝑅 the absolute target errors for 𝑞
and 𝑟, recursively passed on to the subpolynomials.

— For a multiplication 𝑝(𝑥) = 𝑞(𝑥)× 𝑟(𝑥), distributing an absolute target error 𝛿 is slightly
more complicated: we need to first compute tight and finite upper bounds �̄�𝑄 > 0 and
�̄�𝑅 > 0 such that

‖𝑞‖𝐼∞ 6 �̄�𝑄 and ‖𝑟‖𝐼∞ 6 �̄�𝑅.

In contrast to the amplification factors considered for relative target error propagation,
finite bounds �̄�𝑄 and �̄�𝑅 always exist in this absolute error multiplication case, 𝑞 and 𝑟
being polynomials considered on an interval 𝐼 with finite bounds.
Knowing these bounds �̄�𝑄 and �̄�𝑅 we can then distribute the absolute target error 𝛿 as
follows:

𝛿𝑀 ,
1

𝑘
𝛿, 𝛿𝑄 ,

𝑘𝑄
𝑘

1

�̄�𝑅
𝛿 and 𝛿𝑅 ,

𝑘𝑅
𝑘

1

�̄�𝑄 + 𝛿𝑄
𝛿.

Inhere, 𝑘𝑄 and 𝑘𝑅 are the rounding error unit counts for the subpolynomials 𝑞 and 𝑟,
𝑘 = 𝑘𝑄 + 𝑘𝑅 + 1 the rounding error count for 𝑝, 𝛿𝑀 an absolute error bound for the
floating-point multiplication of 𝑄(𝑥) and 𝑅(𝑥) and 𝛿𝑄 and 𝛿𝑅 the absolute target errors
for 𝑞 and 𝑟, recursively passed on to the subpolynomials.

As a matter of course, performing target error distribution for an absolute error bound
comes at the cost that some of the accuracy bounds get estimated in a pessimistic way. Further,
it is only possible if we actually find a (sub-)polynomial 𝑠 that has no zero in 𝐼 . Due to this
observation, we implemented a mix of relative and absolute target error distribution, using
absolute error bounds only if cancellation cases are detected for the relative error bounds.

Tightness of the obtained bounds Up to this point, we have only sought to find ways to
distribute a target error on the different operations in a polynomial’s evaluation scheme tree
under the premise of correctness: the generated code’s overall error must rigorously be less
than the target error bound. However, an additional, important question for maximum code
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performance is the tightness of the bound, as higher accuracy always affects floating-point
performance.

A general observation is that the previous analysis is in certain cases quite tight, in others
quite pessimistic and hence not tight. This lack of tightness stems from several factors:

— We allocated parts of the error “budget” of the target error for the rounded access to the
polynomial’s free variable 𝑥 and for the rounding of the polynomial’s coefficients. For
actual code generation examples, it can be observed that both the variable 𝑥 and the
coefficients are already stored on the smallest floating-point format that is considered
and hence no rounding will ever actually occur on them.

— Our target error distribution algorithm determines real-valued, positive bounds for the
relative or absolute error of each operation in the tree. These bounds cannot generally be
achieved tightly with a given discrete set of floating-point formats and corresponding
operations. Given an error bound, we will hence choose a floating-point operation that
is actually often quite a bit more accurate than the bound.

Seen from another viewpoint, the actual, final error not tightly achieving the initial
target error bound can have positive effects: if a sufficient number of operations is over-
accurate, other operations might actually use up the additional headroom and use less
accurate implementations with better performance.

It is pretty easy to modify the target error distribution algorithm presented above, so that
it also computes and reports a bound on the actual error due to the floating-point operations
eventually chosen out of the discrete set of possible operations. If the final reported bound on
the actual error is deemed too small with respect to the initial target error, the target error
distribution can be rerun with a higher target error, hoping for the actual error bound being
still lower than the original target error bound.

An elementary step in the modified target error distribution step hence reads as follows:
For each node, execute the following steps:

1. Distribute the target error 𝜀 onto the operation’s target error 𝜀𝑂 and possibly target
errors 𝜀𝑄 and 𝜀𝑅 for the sub-polynomials 𝑞 and 𝑟.

2. On an inner addition or multiplication node, perform recursive calls for 𝑞 and 𝑟.

3. Based on 𝜀𝑂 determine the actual formats used for the floating-point operation for this
step.

4. Compute an actual bound for the chosen operation.

5. Using the actual bounds reported by the possibly performed recursive steps and the
actual bounds for the floating-point operation, compute and report an actual error
bound.

Steps toward code generation

Figure 4.4.2 shows the various stages of the inner part of the generation process. It
is embedded into Metalibm-lutetia which iterates over it to generate a complete function
approximation. This Section deals with the work done at an implementation-level to prepare
trees for code and Gappa certificate generation.
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Figure 4.18 – Adaptive implementation process scheme.

Genericity through an “opaque” data type The modified target error distribution and
actual error bound determination algorithm presented in Section 4.4.2 require a way to
determine, for a given operation target error bound, the floating-point format to be used on
that operation, as well as a way to compute, for the chosen format and operation type, an
actual error bound. These two selection and error bound methods provided, the algorithm
is however generic with respect to the actual floating-point formats used in the final code
generation phase. These formats might be IEEE binary32 or binary64, or floating-point
expansions of such numbers. (In our case, we consider only binary64 based arithmetic).

In our implementation of the polynomial code generation algorithm, we took advantage
of this type of genericity by using an “opaque” data type on the interface between the target
error distribution algorithm and the back-end that chooses the actual floating-point operations
for a given target error and reports the actual bounds for these operations. For the target
error distribution algorithm, the formats to be used in a given code generation instance are
captured in a code generation context object that contains methods for format selection and
error bounding.

From the standpoint of the implementer of these methods, the opaque data type has the
advantage that it allows other, non-IEEE intrinsic parameters to be captured, for example
overlap bounds for multi-word floating-point expansions, as discussed in Section 4.4.2.

Multi-word arithmetic overlap handling We implemented an instantiation of the “opaque”
data type which bridges the new method described in Section 4.4.2 with Metalibm-lugdunum
meta-blocks.

One of the challenges of large multi-word numbers is to manage overlap and renor-
malization. Indeed while every double-double operation we use produces results with no
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overlap between limbs, this format is not sufficient when targeting higher accuracies, and
triple-double format becomes mandatory. Basic block for triple-double are really expensive,
in term of computation, compared to their double-double counterparts. This cost can be
partially limited by using non-normalizing operations. Those operations inspired by the algo-
rithms published in [164] only enforce normalization between the middle and low part of
their triple-double results, they let overlap between high and middle part grows with each
operation. This overlap, although required for performance reason, must be kept contained.

There are two basic families of methods to manage overlaps. The first one called early
renormalization insert a renormalization as soon as the accuracy of a triple-word output
appears to be less than the one which could have been obtained with a non-overlapping
double-word results. This method was used in the legacy implementpoly [165]. The second
method called lazy just-in-time renormalization waits until renormalization is required.
Only at the point where there is no known algorithm to implement an operation, we try to
renormalize one or both of the inputs until we find an applicable algorithm for the operation
at hand. We tolerate increasing overlap until its grows beyond what was acceptable.

Work on Metalibm-lugdunum basic blocks Metalibm-lugdunum has been extended with
multi-word basic blocks. Those basic blocks, based on algorithms from [164], describe addi-
tion, multiplication and normalization primitives from various combination of single-word
and multi-word inputs and outputs. MLLug allows us to go beyond the source description:
MLLug’s meta-blocks are a generic implementation of basic algorithms for multi-word arith-
metic. They can easily be instantiated for various support precisions. A support precision is
the basic binary32 or binary64 format used to store a word in a multi-word value.

The meta-blocks manipulate format descriptors that record various information (value
format, range, relative error, error target). They are used to choose which meta-block can be
applied and to compute the output descriptors which will be used as input descriptors for
the next stage of meta-blocks.

Each MLLug’s block consists of: an application predicate, an expansion function, and an
output format generator. The application predicate encodes the required conditions for a
meta-block to be valid (e.g. order between operands, overlap conditions, . . . ). Only if this
predicate in valid on a set of inputs descriptors the corresponding meta-block can be applied
to those inputs. The expansion function generates the MDL sequence to implement the meta-
block. This function is parameterized by the support word format (e.g. binary64). Finally, the
output format generator is a function which generates the output format descriptor based on
the input format descriptors.

Power tree handling As explained in Section 4.4.2, in this work we manipulate a tree, where
leaves may be formed by accesses to power 𝑥𝑡 of the variable 𝑥. These particular nodes may
appear at different place in the tree, and for performance purpose, they must be handle
separately. This is done in two steps.

First when deciding the polynomial evaluation tree, we compute, at the same time and
using CGPE, a set of trees, one for each 𝑥𝑡 leaf appearing in the whole evaluation. These small
trees are formed by accesses to the variable 𝑥 and multiplication nodes, and are chosen so as
the number of multiplications used for evaluating all the 𝑥𝑡 is the smallest.

Second, once the target bound computation and format determination are performed, for
each power 𝑥𝑡 node appearing in the polynomial evaluation tree, we obtain a couple (target
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error, format). The remaining part consists in distributing the error “budget” in these small
power trees, and in deciding if this format can be used while ensuring an actual error less
than this target error. For doing this, for each value 𝑡 and each format we need for this 𝑥𝑡, we
consider only the 𝑥𝑡 power node requiring the smallest target error, the other ones can be
implemented in the same way while satisfying accuracy constraint. And finally we launch
the target bound computation on the tree computing 𝑥𝑡 with this particular smallest target
error, and we determine the corresponding output format, which might come out different
from the format previously chosen. This whole process results in eventually several “budget”
distributions for a given 𝑥𝑡 power, and thus different computation trees with different output
accuracies and formats. At generation time, the most appropriate trees will finally be chosen
among the ones computed according to target error bounds and output formats.

Generation of a Gappa correctness proof The pieces of information, such as the error
bounds of the operations, manipulated by the modified target error distribution algorithm
presented above, are easily captured as annotations on the polynomial’s evaluation scheme
tree. Using these annotations, it is pretty straightforward to generate a Gappa script. This
script, when fed into the Gappa proof tool, allows the error bound computations to be
checked and formally verified, when needed. Metalibm-lutetia for example does not rely on
the polynomial code generation algorithm in a way that it needs it to report a rigorous result.
It rather uses the error bound computed and proven by Gappa.

One challenge in the Gappa proof script generation is to find the appropriate amount of
Gappa proof hints. These hints are used by Gappa as an indication on which is the best way
to express the overall roundoff error of the implemented polynomial with respect to the exact
polynomial in terms of the elementary error bounds for each operation. On the one hand,
a Gappa script with too few proof hints may result in Gappa’s failure to prove the overall
error bound while the bound is still valid. On the other hand, Gappa may take too much
time to process a proof script with too many proof hints, making the validation infeasible in
practice. Our heuristic to solve this issue is to emit all possible hints we are aware of given
the annotations in the polynomial evaluation scheme tree but to make Gappa use them only
if a first Gappa run without hints was unable to prove the implemented polynomial’s overall
error bound.

Numerical experiments

We have implemented this new approach in a Python environment, using PythonSollya
and PythonCGPE bindings, and plugged it with the range reduction process of Metalibm-
lutetia. Numerical experiments were carried out to compare the new method against Sollya’s
legacy implementpoly function [41, 165] in terms of performance. Those experiments were
made on four problem definitions with target errors varying from 2−10 up to 2−85:

— exponential: approximation of exp(𝑥) on [−1
2 ,

1
2 ],

— sine: approximation sin(𝑥) on [−𝜋
4 ,

𝜋
4 ],

— hyperbolic sine: approximation of sinh(𝑥) on [−1, 1],

— erf: approximation of erf(𝑥)− 1
2 on [14 ; 1

4 ].

The exponential, sine and hyperbolic sine problems only use polynomial approximations
after argument reduction, while the erf problem authorizes a table with up to 8-bit indices.
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Table 4.3 – Speedup of new vs. reference implementpoly.
Target accuracy: sine erf exponential hyperbolic sine
− log2 𝜀

(bits)
10 0.70 0.73 1.07 1.08
20 0.86 1.07 1.32 1.13
30 0.81 1.09 1.46 1.07
40 1.24 1.24 1.69 1.26
45 1.51 1.34 1.53 1.00
50 0.81 0.87 1.69 0.33
55 ? ? 1.42 0.98
65 ? ? 3.13 1.53
75 ? ? 2.54 1.82
85 ? ? 2.73 3.48

The latter is interesting because the function has zeros on the interval, but those zeros are
not floating-point values. Thus it is possible to implement it with a bounded relative error.

For each experiments, the output code was compiled using GCC 6.3.0 under GNU/Linux
environment on an Intel R○ core i5 (7th gen, 2.5 GHz), with AVX2 flags activated (-mavx2).
Results are shown in Table 4.3, where “?” means that either the reference or the new version
of the process failed.

Using our new implementation process, we can observe a speedup up to 3.48 (for the
exponential problem), which shows the interest of our approach.

An interesting point is that the speedup grows when the required target error decreases,
and thus our solution efficiency increases with the polynomial degree and the complexity
of the selected meta-blocks. Using multi-word floating-point arithmetics make programs
more complex, and much slower. By using parallel schemes our method suffers less from
this slow-down, since this parallelism allows for better exploitation of modern architecture
capabilities.

However our new method was not able to generate a proper implementation for all target
errors, in part due to the smaller meta-block diversity compared to the legacy implementpoly.
It constitutes one of the current limitations of our method.

On small accuracy targets, our approach is slower or close to a speedup of 1. This is due to
the fact that there is not as much parallelism to exploit for those error targets: the polynomial
degree is generally smaller, requiring less operations.

Conclusion

This Section addresses the problem of generating fast and accurate programs for polyno-
mial evaluation, in the context of the automated implementation of mathematical functions.
The proposed approach consists in extending Metalibm-lutetia by considering parallel evalu-
ation schemes and by plugging this tool into the Metalibm-lugdunum framework to benefit
from its advanced features and the ability of its back-end in targeting modern vector architec-
tures.

The work presented here led to the development of a first version of the tool. As shown
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in Section 4.4.2, this allows us to generate programs for a significant set of benchmarks in
a few minutes, for which a speedup of up to 3.48 can be observed in practice on a AVX2
micro-architecture.

Our research direction is twofold: first our current implementation considers only bi-
nary64 (single or multi-word) floating-point arithmetic, thus limiting the scope of problems
that can be tackled. A direct extension is to consider other IEEE floating-point formats, such
as binary32. The genericity of our tool through the use of an “opaque” data type makes this
treatable in the near future. However a more challenging extension is to adapt that work
for other non-standard arithmetics, like fixed-point arithmetic. Second, as detailed in Sec-
tion 4.4.2, programs are built so as their relative error satisfies the error constraint. It makes
sense to adapt our tool to work with absolute error, instead, as in [33].

4.4.3 Metalibm Usage: Future Work

In Section 4.3 and in this Section 4.4, we have seen how our Metalibm-Lutetia tool can be
combined with other tools, such as NumGfun [189], Metalibm-Lugdunum [32], CGPE [194,
218], in order to leverage various aspects of it: open-endedness by producing code for D-finite
functions, performance on modern super-scalar processors as well as vectorized use on SIMD
vector units. As a matter of course, this list of cooperation and code linkage has not yet
been exhausted; many opportunities are left: for future work, we may consider combining
metalibm-lutetia, e.g. with static code analysis tools such as Daisy [58], which we have
tempted with prototypes already, or accuracy enhancement tools, such as Precimonious [222],
or even Compilers, such as clang based on LLVM. We see a technical hindrance that is
becoming pressingly important. It is the interpreted nature of the Sollya [41] language,
used for Metalibm-Lutetia. Another hindrance is the absence of success rate guarantees for
functions generation instances, in the sense that Metalibm guarantees the produced code to
be correct when it succeeds to generate code. However it is currently unable to guarantee that
code can be generated for a given function implementation problem input. We shall strive at
addressing these issues in future work.

4.5 Tool-Chain Similarities with LTI Filter Implementation

In this Chapter 4, we have opened the floating-point environment with respect to code that
is not written by humans and that stays static but that is obtained through a code generation
process. We have done this work at the example of mathematical functions. As a matter of
course, the use of mathematical functions is widespread in scientific computing [211] and
even computer gaming makes heavy use of certain elementary functions [233]. However,
another type of numerical software is tremendously more widespread: Linear Time Invariant
(LTI) Filters. As we shall see in more detail in Chapter 5, these filters are devices used in
Digital Signal Processing to attenuate or amplify certain spectral components of a digitized
signal, such as an audio or machine control signal. They are used in common application
devices like telephones, telecommunication equipment, cars, trains, airplanes, industrial
machinery, hearing aids, etc. [250].

On the one hand, as an object that needs numerical implementation, LTI filters are quite
similar to the object of the functions we have considered so far: numerical input is trans-
formed into numerical output, according to rules that are given as analytical statements. An
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implementation using some kind of arithmetic is nothing but an approximation to the real,
mathematical object. The resulting error needs to be kept as low as possible, while ensuring
good performance. On the other hand, LTI filters are different from mathematical functions.
First of all, functions do not have internal state, filters do [250]. Second, functions are often
implemented in floating-point environments, whereas filter implementations on embedded,
small processors often prefer fixed-point arithmetic. Third, while approximations to functions
are most reasonably evaluated in terms of the maximum error [43], filter approximations need
to be evaluated in other types of error, for example in terms of absolute noise energy induced
by the filter [250]. Finally, it should be noted that while mathematical libraries (libms) of
standard functions make sense in scientific computing, filters are naturally open-ended: each
implementation is a one-time use-case of the general concept of LTI filters. It is adapted in the
design phase to the precise functionality it needs to deliver in this one only utilization [250].

Amazingly, LTI filters and mathematical functions also share commonalities in their
implementation and in the way this implementation is derived from its specification:

— Functions are eventually approximated using polynomials, i.e. (repeated) sums of
products of input values and precomputed constants. As we will see in more detail
in Chapter 5, LTI filter implementations also use sums of products with precomputed
constants. Sensitivity and accuracy analysis techniques for polynomials as well as
approaches to map them onto superscalar hardware units can hence be reused for LTI
filters, too.

— The approximation polynomials used for implementation of functions are computed
using variants of the Remez algorithm. LTI filters coefficients are obtained for a given
specification using the Parks-McClellan algorithm [205] which is nothing but a variant
of the Remez algorithm [214, 215].

— The structure of a code generation algorithm, seen from a birdview perspective, for
LTI filters is confronted with just the same issues a code generator for functions is
confronted with: errors that stem from arithmetical evaluation mix with errors due to
approximation. Code generation hence often contains optimization loops, which are
not fully understood algorithmicly [250].

Due to these commonalities, it would hence make sense to share software between code
generators for filters and functions. Unfortunately, we are not there, yet. At the time of
writing, software reuse between metalibm and code generators for LTI filters, such as fixif 11

is reduced to a common base in the form of Sollya. However, in future work, we strive
at making the code base even more shared, which is a kind of work that may start with
enhancements to Sollya directly aimed towards LTI filters. We shall present the start of this
work in Chapter 5.

4.6 Code Generators: Lessons Learned and Open Questions

With our work on code generators for mathematical functions we have strove at extending
the floating-point environment, as it is offered e.g. by IEEE754-2008. Producing an imple-
mentation of a mathematical function has become really easy for the numerical developer,
so its cost has been considerably reduced. For instance, as shown in Section 4.4.1, we could
leverage our metalibm tool for the design of a vectorized mathematical library. The overall

11. https://github.com/fixif/fixif

https://github.com/fixif/fixif
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effort for all the 9 functions in the library was less than the effort we had put into the de-
velopment of one of the functions we implemented in CRLibm in the past [57, 165]. It was
also possible to leverage metalibm to provide implementations of functions which no other
implementation was known for in the literature; we showed these approaches in Section 4.3.

We have started working on other subjects, such as LTI filters, for which code generation
might also make sense; we discussed this point in Section 4.5 and we will look at it again
in Chapter 5. In the future, we would like to leverage the opportunities offered by code
generation techniques also for other domains, such as Kalman filters or code used in machine
learning. We shall explain the details of these projects in more detail in Chapter 6, Section 6.2.3.

One of the lessons that we have learned with our work on code generators is that even
though –and because– there is a change at which level algorithmic development takes place,
the design of a code generator for a specific domain needs very precise knowledge of the
algorithms used in this domain first. Simply put, it is hard to write a code generator for
a class of say exponential functions 𝑎𝑥 without having written such functions manually a
couple of times. While this seems natural, it might become a major hindrance for the further
democratization of code generation techniques for numerical code: we would rather like to
be able to abstract from the domain-specific knowledge. For other code transformation tools,
such as compilers for languages like C, Fortran, Java etc. this is already the case; it suffices to
look at classical books on compiler design to see that compilation technology is both language-
and architecture-agnostic [104]. A compiler-designer for a certain language can build on the
general, established principles for the design of a compiler, while the designer of a numerical
code generator has no such guidance, yet.

Open questions in numerical code generation also include finding the right place for
static and dynamic code analysis. Even though we would like to start code generation
from the most basic, mathematical description of a problem, software engineers are often
confronted with the issue that the only description that does exist is legacy code. Even though
we would like to start code generation from an easy-to-analyze mathematical description,
technologically it might also make sense to start code generation with existing code. For these
applications, static and also dynamic code analysis might help. A possible scheme aimed at
increased performance is to replace existing code only for very heavily used input values,
keeping the legacy code as a fall-back for the rarer “outlier” inputs. Using approaches like
the one described by Piparo [210] may be helpful for this purpose. Work on integration with
static code analysis has already started [58]; we shall continue on this path.





CHAPTER 5
A priori Error Control in

Multiprecision Floating-Point
Arithmetic

Errare humanum est, sed in errore perseverare
diabolicum.

Cicero, Orationes Philippicae

5.1 Introduction

As we have already seen in the previous Chapter 4, Section 4.5, code generation for
Linear Time Invariant (LTI) Filters, which mostly use fixed-point arithmetic internally, is quite
similar to code generation for elementary functions. This aspect has encouraged us to invest
ourselves into the research field of LTI Filters, in particular into analyzing the behavior of LTI
Filters, as they undergo the different steps of a code generation process.

Code generation is always concerned with producing code that is optimal with respect
to certain criteria, as we have seen already in Chapter 4. For LTI Filters, the most important
criteria are the noise introduced by the filter during the filtering of a signal as well as power
consumption and cost of evaluation, be it measured in area on an FPGA or ASIC or in terms
of basic operations on a DSP [250].

When starting to speak about “optimal” implementations, one of course easily gets onto
thin ice, in particular when the respective criterion can only be measured with a certain
error. The question is whether the “optimal” implementation has really reached an extremum
point or whether we simply can see clear around that extremum point, due to the error.
Interval arithmetic can often help in these circumstances, allowing a statement about some
measure to be made rigorous, with both a lower and an upper bound. We have used some
a posteriori certificates in the past, for instance when we computed the maximum error
of a polynomial with respect to a function it was supposed to approximate with interval
arithmetic techniques [40].

A posteriori techniques however have the disadvantage of often requiring human insight
into problems: it is up to a human to understand that the compute precision at a certain
step in a generation process had not been set to an appropriate level and that the fact that
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the final result does not fulfill this or that criterion is due to this one step. When we strive
for full automation, we should rather have the computer adapt the compute precision to an
appropriate level in the first place.

A priori error control means exactly this: we wish to design numerical algorithms that
solve a certain computational problem rigorously, viz. by providing an output interval, but
we want at the same time these algorithms to adapt their compute precision automatically, so
that we are sure that the interval eventually output by the algorithm will satisfy a certain a
priori error bound.

It is easy to see that most interval arithmetic-based algorithms can be forced to satisfy such
an a priori error specification: with compute precision set to some initial value heuristically,
the algorithm is run, which yields an interval. If that interval is accurate enough, it is output
as the interval fulfilling the given a priori error bound. If not, the compute precision is
increased and the algorithm is re-run. This process continues until the error bound is met.
This scheme is easy to implement but it is not always very efficient.

We hence tried to study other techniques in computer arithmetic that would allow for
the computation of measures on LTI filters in one single pass, adapting precision as needed
to meet the a priori error bound at once. We succeeded to design such an algorithm for the
so-called Worst-Case Peak Gain (WCPG) measure; we are going to present this algorithm in
Section 5.2. For other LTI implementation problems, we go still one level up, utilizing our
WCPG algorithm as a basic brick, in order to statically determine the compute precisions –in
terms of fixed-point MSB and LSB positions– needed for LTI filter evaluation with a given
noise error bound. We will present this work in Section 5.3. Unfortunately, for certain very
particular instances, we will need to fall back to a precision increasing scheme again.

5.2 Precision Adaptation in LTI Filter Analysis

This Section on precision adaptation in LTI filter analysis is based on an article we pub-
lished in [252]. It was our first step into rigorous multiple precision computer arithmetic that
adapts precision automatically with a scheme more complex than a compute-check-increase-
precision loop.

5.2.1 Introduction

The majority of control and digital signal processing algorithms is dedicated to linear time-
invariant (LTI) systems with finite or infinite impulse response. Most of them are implemented
for application in embedded systems, which use finite-precision arithmetic. Unfortunately, the
quantification of coefficients and further roundoff errors lead to degradation of the algorithms.
Therefore, an accurate error analysis of implementation of such algorithms is required.

However, this analysis is complicated by the non-linear propagation of errors through the
filter as they are amplified on each step by internal state of the system. A solution is proposed
in [113], based on a property of bounded-input bounded output systems [13, 35] where the
largest possible peak value of the output is determined by the use of the Worst-Case Peak
Gain (WCPG) matrix. Error propagation analysis in LTI systems is directly dependent on the
reliable evaluation of the WCPG.

This measure is computed with an infinite sum and it has matrix powers in each summand.
These problems are both known to be non-trivial. In this Section we propose a detailed
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algorithm for the reliable evaluation of the WCPG matrix with multiple precision. This
algorithm ensures that the WCPG is computed with an absolute error rigorously bounded by
an a priori given value 𝜀. For these purposes several multiprecision algorithms for complex
entries with rigorous bounds were developed. This is achieved by adapting the precision of
intermediate computations and correct rounding. Therefore, we present not only the error
analysis of the approximations made on each step of the WCPG computation, but we also
deduce the required accuracy for our kernel multiprecision algorithms such that the overall
error bound is satisfied.

We analyze the error induced by truncating the infinite sum and a direct formula for
the computation of a lower bound on truncation order for a desired absolute error. The
truncation order algorithm involves Interval Arithmetic computations and uses Theory of
Verified Inclusions.

Some preliminary definitions about LTI systems are recalled in Section 5.2.2. Section 5.2.3
describes the global algorithm used to reliably evaluate the WCPG matrix. The truncation
order and the truncation error are analyzed in Section 5.2.4. Section 5.2.5 is focused on the
different steps used for the summation and the associated error analysis, whereas Section 5.2.6
details some basic bricks in multiple precision. Finally, numerical examples are presented in
Section 5.2.7 before conclusion.

Notation: Throughout this Section matrices are in uppercase boldface (for example 𝐴),
vectors are in lowercase boldface (for example 𝑣), scalars are in lowercase (for example 𝛼).
Operators ⊗, and ⊕ denote floating-point (FP) multiplication and addition respectively, F
the set of FP numbers. [𝑥] corresponds to an interval. 𝐴* denotes the conjugate transpose
of the matrix 𝐴. All matrix absolute values and inequalities are considered to be element-
by-element, for example |𝐴| < |𝐵| denotes |𝐴𝑖𝑗 | < |𝐵𝑖𝑗 | ∀𝑖, 𝑗. In addition, 𝐴 < 𝜀 denotes
𝐴𝑖𝑗 < 𝜀 ∀𝑖, 𝑗. 𝐼𝑛 denotes the identity matrix of size 𝑛× 𝑛 and 𝜌(𝐴) the spectral radius of 𝐴.

In further discussions the error matrices are bounded in respect to their Frobenius norm.
The Frobenius norm is sub-multiplicative and it has several good properties used in numerical
analysis. Let 𝐾 be some matrix, 𝐾 ∈ C𝑛×𝑚, then

|𝐾𝑖𝑗 | 6 ‖𝐾‖𝐹 ∀𝑖, 𝑗 (5.1)

‖𝐾‖2 6 ‖𝐾‖𝐹 6
√︀

min(𝑚,𝑛) ‖𝐾‖2 , (5.2)

where ‖𝐾‖2 is the spectral-norm, i.e. equal to the largest singular value of 𝐾.
Moreover, if 𝐾 is a square 𝑛 × 𝑛 matrix such that ‖𝐾‖2 6 1, then for all 𝑘,

⃦⃦
𝐾𝑘
⃦⃦
2
6 1

and
⃦⃦
𝐾𝑘
⃦⃦
𝐹
6
√
𝑛.

5.2.2 The Worst-Peak Gain Measure

A Linear Time Invariant (LTI) filter is a system used in signal processing, image pro-
cessing, control theory, etc. It is defined by an input-output relationship in time-domain or
equivalently in frequency-domain. Linear controllers, Finite Impulse Response (FIR) filters,
Infinite Impulse Response (IIR) are classical examples of LTI systems. We focus here only
on discrete-time systems: a discrete-time LTI system (filter) is a numerical application that
transforms an input signal {𝑢(𝑘)}𝑘>0 into an output signal {𝑦(𝑘)}𝑘>0 (𝑢(𝑘) and 𝑦(𝑘) may be
vectors or scalars), where 𝑘 ∈ N is the step time.

A common input-output relationship is the state-space representation [133]. It describes
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the evolution of the state vector 𝑥(𝑘) from the previous step and the input:

ℋ
{︂

𝑥(𝑘 + 1) = 𝐴𝑥(𝑘) + 𝐵𝑢(𝑘)

𝑦(𝑘) = 𝐶𝑥(𝑘) + 𝐷𝑢(𝑘)
(5.3)

where 𝑢(𝑘) ∈ R𝑞×1 is the input vector, 𝑦(𝑘) ∈ R𝑝×1 the output vector, 𝑥(𝑘) ∈ R𝑛×1 the state
vector and 𝐴 ∈ R𝑛×𝑛, 𝐵 ∈ R𝑛×𝑞, 𝐶 ∈ R𝑝×𝑛 and 𝐷 ∈ R𝑝×𝑞 are the state-space matrices of
the system. Unlike a mathematical function, the output at time 𝑘 depends not only on in
the input at time 𝑘 but also on the internal state of the filter (generally determined from the
previous inputs and outputs).

Proposition 5.2.1 (Bounded Input Bounded Output systems). Letℋ be a state-space system.
If an input {𝑢(𝑘)}𝑘>0 is known to be bounded by �̄� (∀𝑘 > 0, |𝑢𝑖(𝑘)| 6 �̄�𝑖, 1 6 𝑖 6 𝑞), then
the output {𝑦(𝑘)}𝑘>0 will be bounded iff the spectral radius 𝜌(𝐴) is strictly less than 1. This
property is known as the Bounded Input Bounded Output (BIBO) stability [133].

Moreover, in that case, the output is (component-wise) bounded by �̄� with �̄� = 𝑊�̄�
where 𝑊 ∈ R𝑝×𝑞 is the Worst-Case Peak Gain matrix [13] of the system, defined by

𝑊 := |𝐷|+
∞∑︁

𝑘=0

⃒⃒
⃒𝐶𝐴𝑘𝐵

⃒⃒
⃒ (5.4)

Proof. Let {𝐽(𝑘)}𝑘>0 be the impulse response matrix of the system, i.e. 𝐽 𝑖𝑗(𝑘) is the response
on the 𝑖th output to the Dirac impulse at time 𝑘 = 0 (i.e. 𝛿(0) = 1 and 𝛿(𝑘) = 0, ∀𝑘 ̸= 0) on
the 𝑗th input. With (5.53), we have

𝐽(𝑘) =

{︃
𝐷 if 𝑘 = 0

𝐶𝐴𝑘−1𝐵 if 𝑘 > 0.
(5.5)

Since the input {𝑢(𝑘)}𝑘>0 can be seen as a weighted sum of Dirac impulses (shifted in time),
and thanks to the linearity and time invariance property of LTI systems [133], we get

𝑦(𝑘) =

𝑘∑︁

𝑙=0

𝐽(𝑙)𝑢(𝑘 − 𝑙). (5.6)

({𝑦}𝑘>0 is the result of the convolution of {𝐽}𝑘>0 by {𝑢}𝑘>0). Then the output is (component-
wise) bounded by

𝑦(𝑘) 6

(︃
𝑘∑︁

𝑙=0

|𝐽(𝑙)|
)︃
�̄�, ∀𝑘 > 0. (5.7)

We have equality for the 𝑖th output if the input is such that 𝑢𝑗(𝑙) = �̄� · sign
(︀
𝐽 𝑖𝑗(𝑘 − 𝑙)

)︀
,

∀0 6 𝑙 6 𝑘, where sign(𝑥) returns ±1 or 0 depending on the sign of 𝑥. Finally

∀𝑘 > 0, 𝑦(𝑘) <

(︃ ∞∑︁

𝑙=0

|𝐽(𝑘)|
)︃
�̄�. (5.8)

Remark 1. 𝑊�̄� is the supremum of the output {𝑦}𝑘>0, since it is possible to build a finite
input {𝑢(𝑘)}06𝑘6𝐾 to approach it on any given output at any given distance.
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ℋ*
𝑢(𝑘)

𝑒(𝑘)

𝑦*(𝑘) ⇐⇒
ℋ

ℋ𝑒

𝑢(𝑘)

𝑒(𝑘)
+

𝑦(𝑘)

Δ𝑦(𝑘)

𝑦*(𝑘)

Figure 5.1 – The implemented filter is equivalent to the exact filter where the output is
corrupted by the computational errors passing themselves through a filter.

Remark 2. This proposition can be completed when considering intervals for the input,
instead of bounds (corresponding to symmetric intervals). In that case, the Worst-Case Peak
Gain matrix indicates by how much the radius of the input interval is amplified on the
output [113] (although this is not valid for the transient phase, i.e. for the few first steps).
However, even in that case, 𝑊�̄� is a supremum we need to compute.

This proposition can be used to bound outputs, states or intermediate variables in the
context of finite precision implementation of algorithms, and, more specifically, in Fixed-Point
arithmetic. In [112], an extension of the state-space has been presented, in order to represent
and encompass all the possible algorithms for linear filters (i.e. all the input-to-output data
flows based on additions, multiplications by constant and delay, such as state-space, direct
forms, 𝜌DFIIt [261], etc.), and the same approach was applied.

First, it is used to bound all the variables involved in the algorithm, and then to deter-
mine their fixed-point representation (position of the Most Significant Bit and scaling) while
preserving by construction from overflow.

Second, it is used to determine the impact on the output of the computational errors.
Classical error analysis cannot be used in that context due to the feedback scheme of the
computation (Interval Arithmetic or Affine Arithmetic do not provide tight bounds [181]).

Since the filter is linear, the implemented filterℋ* can be seen as the exact filterℋ where
the output is corrupted by the vector of errors 𝑒(𝑘) occurring at each sum of product through
a given linear filterℋ𝑒 (see Figure 5.1).

A State-space representation ofℋ𝑒 can be obtained analytically [113] and Proposition 5.2.1
can be used to determine the output error Δ𝑦 due to finite-precision arithmetic.

For all these reasons, the reliable computation of the Worst-Case Peak Gain matrix is a
required step for the accurate error analysis of LTI systems in finite precision.

5.2.3 An Algorithm with a priori Accuracy

Given a BIBO stable LTI filter in state-space realization (5.53) and 𝜀, a desired absolute
approximation error, we want to determine the Worst-Case Peak Gain matrix 𝑊 of this filter,
defined in (5.4). While computing such an approximation, various errors, such as truncation
and summation errors, are made.

Instead of directly computing the infinite sum
⃒⃒
𝐶𝐴𝑘𝐵

⃒⃒
for any 𝑘 > 0, we will use an

approximate eigenvalue decomposition of 𝐴 (i.e. 𝐴 ≈ 𝑉 𝑇𝑉 −1) and compute the FP sum⃒⃒
𝐶𝑉 𝑇 𝑘𝑉 −1𝐵

⃒⃒
for 0 6 𝑘 6 𝑁 .

Our approach to compute the approximation 𝑆𝑁 of 𝑊 is summarized in algorithm 9
where all the operations (⊗, ⊕, inv, abs, etc.) are FP multiple precision operations done at
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Input: 𝐴 ∈ F𝑛×𝑛,𝐵 ∈ F𝑛×𝑞,𝐶 ∈ F𝑝×𝑛,𝐷 ∈ F𝑝×𝑞, 𝜀 > 0
Output: 𝑆𝑁 ∈ F𝑝×𝑞

1 Compute 𝑁
2 Compute 𝑉 from an eigendecomposition of 𝐴
𝑇 ← inv(𝑉 )⊗𝐴⊗ 𝑉
if ‖𝑇 ‖2 > 1 then return ⊥

3 𝐵′ ← inv(𝑉 )⊗𝐵
𝐶 ′ ← 𝐶 ⊗ 𝑉
𝑆−1 ← |𝐷|, 𝑃−1 ← 𝐼𝑛
for 𝑘 from 0 to 𝑁 do

4 𝑃 𝑘 ← 𝑇 ⊗ 𝑃 𝑘−1

5 𝐿𝑘 ← 𝐶 ′ ⊗ 𝑃 𝑘 ⊗𝐵′

6 𝑆𝑘 ← 𝑆𝑘−1 ⊕ abs(𝐿𝑘)

end
return 𝑆𝑁

Algorithm 9: Floating-point evaluation of the WCPG.

various precisions to be determined such that the overall error is less than 𝜀:

|𝑊 − 𝑆𝑁 | 6 𝜀. (5.9)

The overall error analysis decomposes into 6 steps, where each one expresses the impact
of a particular approximation (or truncation), and provides the accuracy requirements for
the associated operations such that the result is rigorously bounded by 𝜀. These steps are
discussed in detail in Section 5.2.4 and 5.2.5:

Step 1: Let 𝑊𝑁 be the truncated sum

𝑊𝑁 :=

𝑁∑︁

𝑘=0

⃒⃒
⃒𝐶𝐴𝑘𝐵

⃒⃒
⃒+ |𝐷| . (5.10)

We compute a truncation order 𝑁 of the infinite sum 𝑊 such that the truncation error is less
than 𝜀1 > 0:

|𝑊 −𝑊𝑁 | 6 𝜀1. (5.11)

See Section 5.2.4 for more details.

Step 2: Error analysis for computing the powers 𝐴𝑘 of a full matrix 𝐴, when the 𝑘 reaches
several hundreds, is a significant problem, especially when the norm of 𝐴 is larger than 1
and its eigenvalues are close to 1. However, if 𝐴 may be represented as 𝐴 = 𝑋𝐸𝑋−1 with
𝐸 ∈ C𝑛×𝑛 strictly diagonal and 𝑋 ∈ C𝑛×𝑛, then powering of 𝐴 reduces to powering the
diagonal matrix 𝐸, which is more convenient.

Suppose we have a matrix 𝑉 approximating 𝑋 . We require this approximation to be just
quite accurate so that we are able to discern the different associated eigenvalues and be sure
their absolute values are less than 1.

We may then consider the matrix 𝑉 to be exact and compute an approximation 𝑇 to
𝑉 −1𝐴𝑉 with sufficient accuracy such that the error of computing 𝑉 𝑇 𝑘𝑉 −1 instead of
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matrix 𝐴𝑘 is less than 𝜀2 > 0:
⃒⃒
⃒⃒
⃒𝑊𝑁 −

𝑁∑︁

𝑘=0

⃒⃒
⃒𝐶𝑉 𝑇 𝑘𝑉 −1𝐵

⃒⃒
⃒
⃒⃒
⃒⃒
⃒ 6 𝜀2. (5.12)

See Section 5.2.5.

Step 3: We compute approximations 𝐵′ and 𝐶 ′ of 𝑉 −1𝐵 and 𝐶𝑉 , respectively. We
require that the propagated error committed in using 𝐵′ instead of 𝑉 −1𝐵 and 𝐶 ′ instead of
𝐶𝑉 be less than 𝜀3 > 0:

⃒⃒
⃒⃒
⃒
𝑁∑︁

𝑘=0

⃒⃒
⃒𝐶𝑉 𝑇 𝑘𝑉 −1𝐵

⃒⃒
⃒−

𝑁∑︁

𝑘=0

⃒⃒
⃒𝐶′𝑇 𝑘𝐵′

⃒⃒
⃒
⃒⃒
⃒⃒
⃒ 6 𝜀3. (5.13)

See Section 5.2.5.

Step 4: We compute in 𝑃 𝑘 the powers 𝑇 𝑘 of 𝑇 with a certain accuracy. It is required that
the error be less than 𝜀4 > 0:

⃒⃒
⃒⃒
⃒
𝑁∑︁

𝑘=0

⃒⃒
⃒𝐶′𝑇 𝑘𝐵′

⃒⃒
⃒−

𝑁∑︁

𝑘=0

⃒⃒
𝐶′𝑃 𝑘𝐵

′⃒⃒
⃒⃒
⃒⃒
⃒ 6 𝜀4. (5.14)

See Section 5.2.5.

Step 5: We compute in 𝐿𝑘 each summand 𝐶′𝑃 𝑘𝐵
′ with a error small enough such that

the overall approximation error induced by this step is less than 𝜀5 > 0:

⃒⃒
⃒⃒
⃒
𝑁∑︁

𝑘=0

⃒⃒
𝐶′𝑃 𝑘𝐵

′⃒⃒−
𝑁∑︁

𝑘=0

|𝐿𝑘|
⃒⃒
⃒⃒
⃒ 6 𝜀5. (5.15)

See Section 5.2.5.

Step 6: Finally, we sum 𝐿𝑘 in 𝑆𝑁 with enough precision so that the absolute error bound
for summation is bounded by 𝜀6 > 0:

⃒⃒
⃒⃒
⃒
𝑁∑︁

𝑘=0

|𝐿𝑘| − 𝑆𝑁

⃒⃒
⃒⃒
⃒ 6 𝜀6. (5.16)

See Section 5.2.5.

By ensuring that each step verifies its bound 𝜀𝑖, and taking 𝜀𝑖 = 1
6𝜀, we get 𝜀1 + 𝜀2 + 𝜀3 +

𝜀4 + 𝜀5 + 𝜀6 6 𝜀, hence (5.9) will be satisfied if inequalities (5.11) to (5.16) are.
Our approach hence determines first a truncation order 𝑁 and then performs summation

up to that truncation error, whilst adjusting precision in the different summation steps.
A competing approach would be not to start with truncation order determination but to
immediately go for summation and to stop when adding more terms does not improve
accuracy. However, such an approach would not allow the final error to be bounded in an a
priori way. As we shall see, the multiple precision FP summation needs to know a bound on
the number of terms to be summed, beforehand.
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5.2.4 Truncation Order and Truncation Error

In [13] Balakrishnan and Boyd propose “simple” lower and upper bounds on𝑁 . However,
they describe their algorithm in terms of exact arithmetic, i.e. do not propose any error
analysis. This iterative algorithm has several difficulties: first of all, matrix 𝐴 exponentiation
is present, which would require an error analysis such as the one proposed in that article.
Secondly, on each iteration (the quantity of which may reach order as high as N) a solution of
Lyapunov equations is required, for which there exist no ready to use solution with rigorous
error bounds on the result. Therefore, a different approach is indispensable. In this Section we
propose a direct formula for the lower bound on 𝑁 along with a reliable evaluation algorithm.

The goal is to determine a lower bound on the truncation order N of the infinite sum (5.4)
such that its tail is smaller than the given 𝜀1. Obviously, 𝑊𝑁 is a lower bound on 𝑊 and
increases monotonically to 𝑊 with increasing 𝑁 . Hence the truncation error is

|𝑊 −𝑊𝑁 | =
∑︁

𝑘>𝑁

⃒⃒
⃒𝐶𝐴𝑘𝐵

⃒⃒
⃒ . (5.17)

A bound on the truncation error

Many simple bounds on (5.17) are possible. For instance, if the eigendecomposition of 𝐴
is computed

𝐴 = 𝑋𝐸𝑋−1 (5.18)

where 𝑋 ∈ C𝑛×𝑛 is the right hand eigenvector matrix, and 𝐸 ∈ C𝑛×𝑛 is a diagonal matrix
holding the eigenvalues 𝜆𝑙, the terms 𝐶𝐴𝑘𝐵 can be written

𝐶𝐴𝑘𝐵 = Φ𝐸𝑘Ψ =
𝑛∑︁

𝑙=1

𝑅𝑙𝜆
𝑘
𝑙 (5.19)

where Φ ∈ C𝑝×𝑛, Ψ ∈ C𝑛×𝑞 and 𝑅𝑙 ∈ C𝑝×𝑞 are defined by

Φ := 𝐶𝑋, Ψ := 𝑋−1𝐵, (𝑅𝑙)𝑖𝑗 := Φ𝑖𝑙Ψ𝑙𝑗 . (5.20)

In this setting, we obtain

|𝑊 −𝑊𝑁 | =
∑︁

𝑘>𝑁

𝑛∑︁

𝑙=1

⃒⃒
⃒𝑅𝑙𝜆

𝑘
𝑙

⃒⃒
⃒ . (5.21)

As required by Proposition 5.2.1, all eigenvalues 𝜆𝑙 of matrix 𝐴 must be strictly smaller
than one in magnitude. We may therefore notice that the outer sum is in geometric progression
with a common ratio |𝜆𝑙| < 1. So the following bound is possible (we remind the reader that
inequalities and absolute values are considered to be element by element):

|𝑊 −𝑊𝑁 | 6
∞∑︁

𝑘=𝑁+1

𝑛∑︁

𝑙=1

|𝑅𝑙|
⃒⃒
⃒𝜆𝑘𝑙
⃒⃒
⃒ 6

𝑛∑︁

𝑙=1

|𝑅𝑙|

⃒⃒
⃒𝜆𝑁+1
𝑙

⃒⃒
⃒

1− |𝜆𝑙|

= 𝜌(𝐴)𝑁+1
𝑛∑︁

𝑙=1

|𝑅𝑙|
1− |𝜆𝑙|

(︂ |𝜆𝑙|
𝜌(𝐴)

)︂𝑁+1

. (5.22)
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Since |𝜆𝑙|
𝜌(𝐴) 6 1 holds for all terms, we may leave out the powers. Notate

𝑀 :=

𝑛∑︁

𝑙=1

|𝑅𝑙|
1− |𝜆𝑙|

|𝜆𝑙|
𝜌(𝐴)

∈ R𝑝×𝑞. (5.23)

The tail of the infinite sum is hence bounded by

|𝑊 −𝑊𝑁 | 6 𝜌(𝐴)𝑁+1𝑀 . (5.24)

Remark 3. Another tighter bound is possible

|𝑊 −𝑊𝑁 | 6 𝜌(𝐴)𝑁+1−𝐾
𝑛∑︁

𝑙=1

|𝑅𝑙|
1− |𝜆𝑙|

(︂ |𝜆𝑙|
𝜌(𝐴)

)︂𝐾
, ∀𝑁 > 𝐾. (5.25)

Deducing a lower bound on the truncation order

In order to get (5.24) bounded by 𝜀1, it is required that

𝜌(𝐴)𝑁+1𝑀 6 𝜀1.

Solving this inequality for 𝑁 leads us to the following bound:

𝑁 >

⌈︂
log 𝜀1

𝑚

log 𝜌(𝐴)

⌉︂
(5.26)

where 𝑚 is defined as 𝑚 := min
𝑖,𝑗
|𝑀 𝑖,𝑗 |.

However we cannot compute exact values for all quantities occurring in (5.26) when using
finite-precision arithmetic. We only have approximations for them. Thus, in order to reliably
determine a lower bound on 𝑁 , we must compute lower bounds on 𝑚 and 𝜌(𝐴), from which
we can deduce an upper bound on log 𝜀1

𝑚 and a lower bound on log 𝜌(𝐴) to eventually obtain
a lower bound on 𝑁 .

A rigorous algorithm to determine truncation order

Due to the implementation of (5.18) and (5.20) with the finite-precision arithmetic, only
approximations on 𝜆,𝑋,Φ,Ψ,𝑅𝑙 can be obtained. There exist many FP libraries, such as
LAPACK 1, providing functions for an eigendecomposition as needed for (5.18) and to solve
linear systems of equations in (5.20). They usually deliver good and fast approximations
to the solution of a given numerical problem but there is neither verification nor guarantee
about the accuracy of that approximation.

For these reasons we propose to combine LAPACK FP arithmetic with Interval Arithmetic
[59] enhanced with the Theory of Verified Inclusions [223], [224] , [226], [227] in order to
obtain trusted intervals on the eigensystem and, eventually, a rigorous bound on 𝑁 .

In Interval Arithmetic real numbers are represented as sets of reals with addition, sub-
traction, multiplication and division defined [59]. The Theory of Verified Inclusions is a set
of algorithms computing guaranteed bounds on solutions of various numerical problems,

1. http://www.netlib.org/lapack/

http://www.netlib.org/lapack/
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developed by S. Rump [223]. The verification process is performed by means of checking an
interval fixed point and yields to a trusted interval for the solution, i.e. it is verified that the
result interval contains an exact solution of given numerical problem.

It permits us to quickly obtain trusted error bounds on the truncation order without
significant impact on algorithm performance, since this computation is done only once. In
addition, if the spectral radius of 𝐴 cannot be shown less than 1, we stop the algorithm.

Using the ideas proposed by Rump in [227], we obtain trusted intervals for the eigensystem
with the following steps:

1. Using the LAPACK eigensolver, we compute FP approximations 𝑉 for the eigenvectors 𝑋
and 𝛼 for the eigenvalues 𝜆, along with error estimates 𝜀𝑋 and 𝜀𝜆. These error estimates are
such that |𝜆−𝛼| 6 𝜀𝜆 and |𝑋 − 𝑉 | 6 𝜀𝑋 should be not far from the truth.

2. We construct, verify and possibly adjust intervals for [𝜆] = [𝛼− 𝜀𝜆,𝛼 + 𝜀𝜆] and [𝑋] =
[𝑉 − 𝜀𝑋 ,𝑉 + 𝜀𝑋 ] such that for all vectors 𝜆′ ∈ [𝜆] there exists a matrix 𝑋 ′ ∈ [𝑋] satisfying
𝐴𝑋 ′ = 𝑋 ′ · diag(𝜆′) and such that for all matrices 𝑋 ′ ∈ [𝑋] there exists a vector 𝜆′ ∈ [𝜆]
satisfying 𝐴𝑋 ′ = 𝑋 ′ · diag(𝜆′). In this process, first intervals for the eigensystem are
constructed from the error estimates 𝜀𝛼 and 𝜀𝑉 as radii and the approximate solutions 𝑉 and
𝛼 as mid-points. Further, these intervals are verified with inclusion algorithms [227]. If the
verification does not succeed, the intervals are extended by some small factor and process is
repeated until it succeeds or until there exists an eigenvalue interval which contains 1.

For the solution of the linear system of equations (LSE) appearing in (5.20), the algorithm for
interval verification is based on [224] and it consists of two steps:

1. Using LAPACK, compute a FP approximation Ω on the solution of 𝑉 Ψ = 𝐵 along with
an error estimate 𝜀Ψ such that |Ψ−Ω| 6 𝜀Ψ should be not far from the truth.

2. Construct, verify and adjust intervals [Ψ] = [Ω− 𝜀Ψ,Ω + 𝜀Ψ] such that for all matrices
𝑋′ ∈ [𝑋] there exists Ψ′ ∈ [Ψ] such that 𝑋′Ψ′ = 𝐵 holds.
The intervals for verification are constructed in the same way as for the eigensystem solution.
We require the existence of the exact solution of the linear system not for the system 𝑉 Ψ = 𝐵
but for [𝑋]Ψ = 𝐵, i.e. [Ψ] must contain the exact solution for each element of the already
verified interval [𝑋].

Finally, the intervals for (5.20), (5.23) and (5.26) are computed with Interval Arithmetic.
Our complete algorithm to determine a reliable lower bound on 𝑁 is given with algorithm 10.

5.2.5 Summation

Once the truncation order determined, we need to provide a summation scheme reliable
in FP arithmetic, i.e. such that the error of computations is bounded by an a priori given
value. To do so we propose to perform all operations in multiple precision arithmetic whilst
adapting precision dynamically, where needed. Several multiple precision algorithms were
therefore developed:

— multiplyAndAdd(𝐴,𝐵,𝐶, 𝛿) that computes 𝐴 ·𝐵 + 𝐶 + Δ, where the error matrix Δ is
bounded by |Δ| < 𝛿, for the given a priori bound 𝛿. We shall notate 𝐴⊗𝐵 for the output of
multiplyAndAdd when 𝐶 is the zero matrix.

— sumAbs(𝐴,𝐵, 𝛿) that computes 𝐴 + |𝐵| + Δ, where the error matrix Δ is bounded by
|Δ| < 𝛿, for the given 𝛿. With a slight notational abuse, we shall also notate 𝐴⊕ abs(𝐵) for
sumAbs.
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Input: 𝐴 ∈ F𝑛×𝑛,𝐵 ∈ F𝑛×𝑞,𝐶 ∈ F𝑝×𝑛, 𝜀1 > 0
Output: 𝑁 ∈ N

1 𝛼,𝑉 , 𝜀𝛼, 𝜀𝑉 ← LAPACK eigendecomposition for 𝐴;
2 Ω, 𝜀Ψ ← LAPACK solver for 𝑉 Ψ = 𝐵;
3 [𝜆], [𝑋]← Eigensystem verification algorithm;
4 [Ψ]← LSE solution verification algorithm;
5 [Φ]← 𝐶[𝑋];
6 [𝑅𝑙]𝑖,𝑗 ← [Φ𝑖,𝑙][Ψ𝑙,𝑗 ] ;
7 [𝜌]← max

𝑖

⃒⃒
[𝜆𝑖]
⃒⃒
;

8 [𝑀 ]←
𝑛∑︀
𝑖=1

⃒⃒⃒
[𝑅𝑖]

⃒⃒⃒
1−

⃒⃒⃒
[𝜆𝑖]

⃒⃒⃒
⃒⃒⃒
[𝜆𝑖]

⃒⃒⃒
[𝜌] ;

9 [𝑚]← min
𝑖,𝑗

⃒⃒
⃒ [𝑀 ]𝑖,𝑗

⃒⃒
⃒;

10 𝑁 ← sup

(︂⌈︂
log

𝜀1
[𝑚]

log [𝜌]

⌉︂)︂
;

11 return N
Algorithm 10: Lower bound of truncation order

— inv(𝑉 , 𝛿) that computes the inverse 𝑉 −1 + Δ, where the error matrix Δ is bounded by
|Δ| < 𝛿, for the given 𝛿. See Section 5.2.6.

These computation kernels adapt the precision of their intermediate computations where
needed. The algorithms we use for these basic bricks will be discussed in Section 5.2.6.

Step 2: using the Eigendecomposition

Error propagation As seen, in each step of the summation, a matrix power, 𝐴𝑘, must be
computed. In [111] Higham devotes an entire chapter to error analysis of matrix powers but
this theory is in most cases inapplicable for state matrices 𝐴 of linear filters, as the requirement
𝜌(|𝐴|) < 1 does not necessarily hold here. Therefore, despite taking 𝐴 to just a finite power 𝑘,
the sequence of computed matrices may explode in norm since 𝑘 may take an order of several
hundreds or thousands. Thus, even extending the precision is not a solution, as an enormous
number of bits would be required.

However, the state matrices 𝐴 usually have a good structure. In real life the state matrices
are diagonalizable, i.e. there exists a matrix 𝑋 ∈ C𝑛×𝑛 and diagonal 𝐸 ∈ C𝑛×𝑛 such that
𝐴 = 𝑋𝐸𝑋−1. Then 𝐴𝑘 = 𝑋𝐸𝑘𝑋−1. A good choice of 𝑋 and 𝐸 are the eigenvector and
eigenvalue matrices obtained with eigendecomposition (5.18). However, with LAPACK we
can compute only approximations on them and we cannot control their accuracy. Therefore,
we propose following method to almost diagonalize matrix 𝐴. The method does not make
any assumptions on matrix 𝑉 except for it being some approximation on 𝑋 . Therefore, for
simplicity of further reasoning we treat 𝑉 as an exact matrix.

Using our multiprecision algorithms for matrix inverse and multiplication we may com-
pute a complex 𝑛× 𝑛 matrix 𝑇 :

𝑇 := 𝑉 −1𝐴𝑉 −Δ2, (5.27)
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where 𝑉 ∈ C𝑛×𝑛 is an approximation on 𝑋 , Δ2 ∈ C𝑛×𝑛 is a matrix representing the element-
by-element errors due to the two matrix multiplications and the inversion of matrix 𝑉 .

Although the matrix 𝐸 is strictly diagonal, 𝑉 is not exactly the eigenvector matrix and
consequently 𝑇 is a full matrix. However it has prevailing elements on the main diagonal.
Thus 𝑇 is an approximation on 𝐸.

We require for matrix 𝑇 to satisfy ‖𝑇 ‖2 6 1. This condition is stronger than 𝜌(𝐴) < 1, and
Section 5.2.5 provides a way to test it. Naturally this condition means that there exist some
margin for computational errors between the spectral radius and 1.

Notate Ξ𝑘 := (𝑇 + Δ2)
𝑘 − 𝑇 𝑘. Hence Ξ𝑘 ∈ C𝑛×𝑛 represents an error matrix which

captures the propagation of error Δ2 when powering 𝑇 . Since

𝐴𝑘 = 𝑉 (𝑇 + Δ2)
𝑘𝑉 −1, (5.28)

therefore
𝐶𝐴𝑘𝐵 = 𝐶𝑉 𝑇 𝑘𝑉 −1𝐵 + 𝐶𝑉 Ξ𝑘𝑉

−1𝐵. (5.29)

Thus the error of computing 𝑉 𝑇 𝑘𝑉 −1 instead of 𝐴𝑘 in (5.10) is bounded by
⃒⃒
⃒⃒
⃒
𝑁∑︁

𝑘=0

⃒⃒
⃒𝐶𝐴𝑘𝐵

⃒⃒
⃒−

𝑁∑︁

𝑘=0

⃒⃒
⃒𝐶𝑉 𝑇 𝑘𝑉 −1𝐵

⃒⃒
⃒
⃒⃒
⃒⃒
⃒ 6 (5.30)

𝑁∑︁

𝑘=0

⃒⃒
⃒𝐶𝐴𝑘𝐵 −𝐶𝑉 𝑇 𝑘𝑉 −1𝐵

⃒⃒
⃒ 6

𝑁∑︁

𝑘=0

⃒⃒
𝐶𝑉 Ξ𝑘𝑉

−1𝐵
⃒⃒

(5.31)

Here and further on each step of the algorithm we use inequalities with left side in form
(5.31) rather than (5.30), i.e. we will instantly use the triangulation property

⃒⃒
|𝑎|−|𝑏|

⃒⃒
6 |𝑎− 𝑏|

∀𝑎, 𝑏 applied element-by-element to matrices.
In order to determine the accuracy of the computations on this step such that (5.31) is

bounded by 𝜀2, we need to perform detailed analysis of Ξ𝑘, with spectral-norm. Using the
definition of Ξ𝑘 the following recurrence can be easily obtained:

‖Ξ𝑘‖2 6 ‖Ξ𝑘−1‖2 + ‖Δ2‖2 (‖Ξ𝑘−1‖2 + 1) (5.32)

If ‖Ξ𝑘−1‖2 6 1, which must hold in our case since Ξ𝑘 represent an error-matrix, then

‖Ξ𝑘‖2 6 ‖Ξ𝑘−1‖2 + 2 ‖Δ2‖2 . (5.33)

As ‖Ξ1‖2 = ‖Δ2‖2 we can get the desired bound capturing the propagation of Δ2 with
Frobenius norm:

‖Ξ𝑘‖𝐹 6 2
√
𝑛(𝑘 + 1) ‖Δ2‖𝐹 . (5.34)

Substituting this bound to (5.31) and folding the sum, we obtain

𝑁∑︁

𝑖=0

⃒⃒
𝐶𝑉 Ξ𝑘𝑉

−1𝐵
⃒⃒
6 𝛽 ‖Δ2‖𝐹 ‖𝐶𝑉 ‖𝐹

⃦⃦
𝑉 −1𝐵

⃦⃦
𝐹
, (5.35)

with 𝛽 =
√
𝑛(𝑁 + 1)(𝑁 + 2). Thus, we get a bound on the error of approximation of 𝐴 by

𝑉 𝑇𝑉 −1. Since we require it to be less than 𝜀2 we obtain a condition for the error on the
inversion and two matrix multiplications:

‖Δ2‖𝐹 6
1

𝛽

𝜀2
‖𝐶𝑉 ‖𝐹 ‖𝑉 −1𝐵‖𝐹

. (5.36)
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Using this bound we can deduce the desired accuracy of our multiprecision algorithms
for complex matrix multiplication and inverse as a function of 𝜀2.

Checking ‖𝑇 ‖2 6 1 Since ‖𝑇 ‖22 = 𝜌(𝑇 *𝑇 ), we study the eigenvalues of 𝑇 *𝑇 . According to
Gershgorin’s circle theorem [92], each eigenvalue 𝜇𝑖 of 𝑇 *𝑇 is in the disk centered in (𝑇 *𝑇 )𝑖𝑖
with radius

∑︀
𝑗 ̸=𝑖

⃒⃒
⃒(𝑇 *𝑇 )𝑖𝑗

⃒⃒
⃒.

Let us decompose 𝑇 into 𝑇 = 𝐹 + 𝐺, where 𝐹 is diagonal and 𝐺 contains all the other
terms (𝐹 contains the approximate eigenvalues, 𝐺 contains small terms and is zero on its
diagonal). Denote 𝑌 := 𝑇 *𝑇 − 𝐹 *𝐹 = 𝐹 *𝐺 + 𝐺*𝐹 + 𝐺*𝐺. Then

∑︁

𝑗 ̸=𝑖

⃒⃒
⃒(𝑇 *𝑇 )𝑖𝑗

⃒⃒
⃒ =

∑︁

𝑗 ̸=𝑖
|𝑌 𝑖𝑗 |

6 (𝑛− 1) ‖𝑌 ‖𝐹
6 (𝑛− 1)

(︁
2 ‖𝐹 ‖𝐹 ‖𝐺‖𝐹 + ‖𝐺‖2𝐹

)︁

6 (𝑛− 1)
(︀
2
√
𝑛+ ‖𝐺‖𝐹

)︀
‖𝐺‖𝐹 . (5.37)

Each eigenvalue of 𝑇 *𝑇 is in the disk centered in (𝐹 *𝐹 )𝑖𝑖 + (𝑌 )𝑖𝑖 with radius 𝛾, where 𝛾 is
equal to (𝑛 − 1) (2

√
𝑛+ ‖𝐺‖𝐹 ) ‖𝐺‖𝐹 , computed in a rounding mode that makes the result

become an upper bound (round-up).
As 𝐺 is zero on its diagonal, the diagonal elements (𝑌 )𝑖𝑖 of 𝑌 are equal to the diagonal

elements (𝐺*𝐺)𝑖𝑖 of 𝐺*𝐺. They can hence be bounded as follows:

|(𝑌 )𝑖𝑖| = |(𝐺*𝐺)𝑖𝑖| 6 ‖𝐺‖2𝐹 . (5.38)

Then, it is easy to see that the Gershgorin circles enclosing the eigenvalues of 𝐹 *𝐹 can be
increased, meaning that if (𝐹 *𝐹 )𝑖𝑖 is such that

∀𝑖, |(𝐹 *𝐹 )𝑖𝑖| 6 1− ‖𝐺‖2𝐹 − 𝛾, (5.39)

it holds that 𝜌(𝑇 *𝑇 ) 6 1 and ‖𝑇 ‖2 6 1.
This condition can be tested by using FP arithmetic with directed rounding modes (round-

up, for instance).
After computing 𝑇 out of 𝑉 and 𝐴 according to (5.27), the condition on 𝑇 should be

tested in order to determine if ‖𝑇 ‖2 6 1. This test failing means that 𝑉 is not a sufficient
approximate of 𝑋 or that the error Δ2 done computing (5.27) is too large, i.e. the accuracy
of our multiprecision algorithm for complex matrix multiplication and inverse should be
increased. The test is required for rigor only. We do perform the test in the implementation of
our WCPG method, and, on the real-world examples we tested, never saw it fail.

Step 3: computing 𝐶𝑉 and 𝑉 −1𝐵

We compute approximations on matrices 𝐶𝑉 and 𝑉 −1𝐵 with a certain precision and
need to determine the required accuracy of these multiplications such that the impact of these
approximations is less than 𝜀3.

Notate 𝐶′ := 𝐶𝑉 + Δ3𝐶 and 𝐵′ := 𝑉 −1𝐵 + Δ3𝐵 , where Δ3𝐶 ∈ C𝑝×𝑛 and Δ3𝐵 ∈ C𝑛×𝑞
are error-matrices containing the errors of the two matrix multiplications and the inversion.
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Using Frobenius norm, we can bound the error in the approximation of 𝐶𝑉 and 𝑉 −1𝐵
by 𝐶′ and 𝐵′ as follows:

𝑁∑︁

𝑘=0

⃒⃒
⃒𝐶𝑉 𝑇 𝑘𝑉 −1𝐵 −𝐶′𝑇 𝑘𝐵′

⃒⃒
⃒ 6

𝑁∑︁

𝑘=0

⃦⃦
⃦Δ3𝐶𝑇

𝑘𝐵′ + 𝐶′𝑇 𝑘Δ3𝐵 + Δ3𝐶𝑇
𝑘Δ3𝐵

⃦⃦
⃦
𝐹
. (5.40)

Since ‖𝑇 ‖2 < 1 holds we have (using Frobenius norm properties)
⃦⃦
⃦Δ3𝐶𝑇

𝑘𝐵′ + 𝐶′𝑇 𝑘Δ3𝐵 + Δ3𝐶𝑇
𝑘Δ3𝐵

⃦⃦
⃦
𝐹
6 (5.41)

√
𝑛
(︀
‖Δ3𝐶‖𝐹

(︀⃦⃦
𝐵′⃦⃦

𝐹
+ ‖Δ3𝐵‖𝐹

)︀
+
⃦⃦
𝐶′⃦⃦

𝐹
‖Δ3𝐵‖𝐹

)︀
.

This bound represents the impact of our approximations for each 𝑘 = 0 . . . 𝑁 . If (5.41)
is bounded by 1

𝑁+1 · 𝜀3, then the overall error is less than 𝜀3. Hence, bounds on the two
error-matrices are:

‖Δ3𝐶‖𝐹 6
1

3
√
𝑛
· 1

𝑁 + 1

𝜀3
‖𝐶′‖𝐹

(5.42)

‖Δ3𝐵‖𝐹 6
1

3
√
𝑛
· 1

𝑁 + 1

𝜀3
‖𝐵′‖𝐹

. (5.43)

Therefore, using bounds on ‖Δ3𝐶‖𝐹 and ‖Δ3𝐵‖𝐹 , we can deduce the required accuracy
of our multiprecision matrix multiplication and inversion according to 𝜀3.

Step 4: powering 𝑇

Given a square complex matrix 𝑇 with prevailing main diagonal, we need to compute its
𝑘th power. Notate

𝑃 𝑘 := 𝑇 𝑘 −Π𝑘, (5.44)

where Π𝑘 ∈ C𝑛×𝑛 represents element-by-element the error on the matrix powers, including
error propagation from the first to the last power. Using the same simplification as in (5.30)
and (5.31) we get the error of computing the approximations 𝑃 𝑘 rather than the exact powers
bounded by

𝑁∑︁

𝑘=0

⃒⃒
⃒𝐶′𝑇 𝑘𝐵′ −𝐶′𝑃 𝑘𝐵

′
⃒⃒
⃒ 6

𝑁∑︁

𝑘=0

⃒⃒
𝐶′Π𝑘𝐵

′⃒⃒ . (5.45)

Thus a bound on a norm of Π𝑘, say ‖Π𝑘‖𝐹 , is required.
Since we need all the powers of 𝑇 from 1 to 𝑁 , we use an iterative scheme to compute

them. It is then evident, that we may write the recurrence

𝑃 𝑘 = 𝑇𝑃 𝑘−1 + Γ𝑘, (5.46)

where Γ𝑘 ∈ C𝑛×𝑛 is the error matrix representing the error of the matrix multiplication at
step 𝑘.
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With 𝑃 0 = 𝐼 , 𝑃 1 = 𝑇 and using (5.46) we obtain

𝑃 𝑘 = 𝑇 𝑘 +

𝑘∑︁

𝑙=2

𝑇 𝑘−𝑙Γ𝑙. (5.47)

Using the condition ‖𝑇 ‖2 6 1 and properties of the Frobenius norm we get

‖Π𝑘‖𝐹 6
⃦⃦
⃦⃦
⃦

𝑘∑︁

𝑙=2

𝑇 𝑘−𝑙Γ𝑙

⃦⃦
⃦⃦
⃦
𝐹

6
√
𝑛

𝑘∑︁

𝑙=2

‖Γ𝑙‖𝐹 . (5.48)

Therefore the impact of approximation of the matrix powers is bounded by

𝑁∑︁

𝑘=0

⃒⃒
𝐶′Π𝑘𝐵

′⃒⃒ 6 √𝑛(𝑁 + 1)
𝑁∑︁

𝑙=2

⃦⃦
𝐶′⃦⃦

𝐹
‖Γ𝑙‖𝐹

⃦⃦
𝐵′⃦⃦

𝐹
. (5.49)

Obviously, if the error of matrix multiplication Γ𝑙 satisfies

‖Γ𝑙‖𝐹 6
1√
𝑛
· 1

𝑁 − 1
· 1

𝑁 + 1
· 𝜀4
‖𝐶′‖𝐹 ‖𝐵′‖𝐹

(5.50)

for 𝑙 = 2 . . . 𝑁 , then we have (5.49) to be less than 𝜀4. Hence using (5.50) we may deduce the
required accuracy of matrix multiplications on each step in dependency of 𝜀4.

Step 5: computing 𝐿𝑘

Once the matrices 𝐶′,𝐵′ and 𝑃 𝑘 are precomputed and the error of their computation is
bounded, we must evaluate their product. Let 𝐿𝑘 be the approximate product of these three
matrices at step 𝑘:

𝐿𝑘 := 𝐶′𝑃 𝑘𝐵
′ + ϒ𝑘, (5.51)

where ϒ𝑘 ∈ C𝑝×𝑞 is the matrix of element-by-element errors for the two matrix multiplications.
Then it may be shown, that the error of computations induced by this step is bounded by
𝑁∑︀
𝑘=0

|ϒ𝑘|.
If we want the overall error of approximation on this step to be less than 𝜀5 then we can

easily deduce the required accuracy of each of those multiplications on every iteration of
summation algorithm.

Step 6: final summation

Finally the absolute value of the 𝐿𝑘 must be taken and the result accumulated in the sum.
We remind the reader that if all previous computations were exact, the matrix 𝐿𝑘 would be a
real matrix and the absolute-value-operation would have been an exact sign manipulation.
However, as the computations were in finite-precision arithmetic, 𝐿𝑘 is complex with a small
imaginary part, which is naturally caused by the errors of computations and must not be
neglected. Therefore the element-by-element absolute value of the matrix must be computed.

Since we perform 𝑁 + 1 accumulations of absolute values in the result sum 𝑆𝑁 , it is
evident that bounding the error of each such computation by 1

𝑁+1𝜀6 is sufficient.
Therefore, using this bound for each invocation of our basic brick algorithm sumAbs we

guarantee bound (5.16).
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5.2.6 Adapting Precision For Linear Algebra Basic Bricks

In Section 5.2.5, we postulated the existence of three basic FP algorithms, multiplyAndAdd,
sumAbs and inv, computing, respectively, the product-sum, the sum in absolute value and the
inverse of matrices. Each of these operators was required to satisfy an absolute error bound
|Δ| < 𝛿 to be ensured by the matrix of errors Δ with respect to scalar 𝛿, given in argument to
the algorithm.

Ensuring such an absolute error bound is not possible in general when fixed-precision
FP arithmetic is used. Any algorithm of this kind, when returning its result, must round
into that fixed-precision FP format. Hence, when the output grows sufficiently large, the
unit-in-the-last-place of that format and hence that final rounding error in fixed-precision FP
arithmetic will grow larger than a set absolute error bound.

In multiple precision FP arithmetic, such as offered by software packages like MPFR 2 [86],
it is however possible to have algorithms determine themselves the output precision of the
FP variables they return their results in. Hence an absolute error bound as the one we require
can be guaranteed. In contrast to classical FP arithmetic, such as Higham analyzes, there is no
longer any clear, overall computing precision, though. Variables just bear the precision that
had been determined for them by the previous compute step.

This preliminary clarification made, description of our three basic bricks multiplyAndAdd,
sumAbs and inv is easy.

For sumAbs(𝐴,𝐵, 𝛿) = 𝐴 + |𝐵| + Δ, we can reason element by element. We need to

approximate 𝐴𝑖𝑗 +
√︁
ℜ𝐵𝑖𝑗

2 + ℑ𝐵𝑖𝑗
2 with absolute error no larger than 𝛿, where ℜ𝑧 and ℑ𝑧

are the real and imaginary parts of the complex 𝑧. This can be ensured by considering the FP
exponents of each of 𝐴𝑖𝑗 , ℜ𝐵𝑖𝑗 and ℑ𝐵𝑖𝑗 with respect to the FP exponent of 𝛿.

For multiplyAndAdd(𝐴,𝐵,𝐶, 𝛿) = 𝐴 · 𝐵 + 𝐶 + Δ, we can reason in terms of scalar
products between 𝐴 and 𝐵. The scalar products boil down to summation of products which,
in turn, can be done exactly, as we can determine the precision of the 𝐴𝑖𝑘 and 𝐵𝑘𝑗 . As a
matter of course the very same summation can capture the matrix elements 𝐶𝑖𝑗 . Finally,
multiple precision FP summation with an absolute error bound can be performed with a
modified, software-simulated Kulisch accumulator [141], which does not need to be exact but
bear just enough precision to satisfy the absolute accuracy bound 𝛿.

Finally, once the multiplyAndAdd operator is available, it is possible to implement the
matrix inversion algorithm inv using a Newton-Raphson-like iteration [204]:

𝑈0 ← some seed inverse matrix for 𝑉 −1

𝑅𝑘 ← 𝑉 𝑈𝑘 − 𝐼𝑛 (5.52)
𝑈𝑘+1 ← 𝑈𝑘 −𝑈𝑘𝑅

where the iterated matrices 𝑈𝑘 converge to 𝑉 −1 provided the multiplyAndAdd operations
computing 𝑅𝑘 and 𝑈𝑘+1 are performed with enough accuracy, i.e. small enough 𝛿 and the
seed matrix satisfies some additional properties. In order to ensure these properties with an
explicit check, an operator to compute the Frobenius norm of a matrix with a given a priori
absolute error bound 𝛿 is required. Implementing such a Frobenius norm operator again boils
down to summation, as shown above.

2. http://www.mpfr.org/

http://www.mpfr.org/
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Example 1 Example 2 Example 3 Example 4

𝑛 10 12 60 3
𝑝 11 1 28 3
𝑞 1 25 4 3

1− 𝜌(𝐴) 1.39× 10−2 8.65× 10−3 1.46× 10−2 2−60

max(𝑆𝑁 ) 3.88× 101 5.50× 109 2.64× 102 -
min(𝑆𝑁 ) 1.29× 100 1.0× 100 1.82× 101 -

𝜀 2−5 2−53 2−600 2−5 2−53 2−600 2−5 2−53 2−600 2−5

𝑁 220 2153 29182 308 4141 47811 510 1749 27485 -
Inversion iterations 0 2 4 2 3 5 1 2 4 -

overall max precision (bits) 212 293 1401 254 355 1459 232 306 1416 -
Overall execution time (sec) 0.11 1.53 60.06 0.85 11.54 473.20 45.62 177.90 9376.86 0.00...

Table 5.1 – Numerical results for 3 real-world and 1 constructed example

5.2.7 Numerical Results

The algorithms discussed above were implemented in C, using GNU MPFR version 3.1.12,
GNU MPFI 3 version 1.5.1 and CLAPACK 4 version 3.2.1. Our implementation was tested on
several real-life and random examples:

— The first example comes from Control Theory: the LTI system is extracted from an active
controller of vehicle longitudinal oscillation [169], and WCPG matrix is used to determine the
fixed-point arithmetic scaling of state and output.

— The second is a 12th-order Butterworth filter, described in 𝜌-Direct Form II transposed [261]
(a particular algorithm, with low complexity and high robustness to quantization and compu-
tational errors), where the errors-to-output LTI systemℋ𝑒 is considered (see Figure 5.1).

— The third one is a large random BIBO stable filter (obtained from the drss command of
Matlab), with 60 states, 14 inputs and 28 outputs.

— The last one is built with a companion matrix 𝐴 with spectral radius equal to 1− 2−60.

Experiments were done on a laptop computer with an Intel Core i5 processor running at 2.8
GHz and 16 GB of RAM.

The numerical results detailed in Table 5.1 show that our algorithm for Worst-Case Peak
Gain matrix evaluation with a priori error bound exhibits reasonable performance on typical
examples. Even when the a priori error bound is pushed to compute WCPG results with an
accuracy way beyond double precision, the algorithm succeeds in computing a result, even
though execution time grows pretty high.

Our algorithm includes checks testing that certain properties of matrices are verified,
in particular that 𝜌(𝐴) < 1 and ‖𝑇 ‖2 6 1. Our Example 4, not taken from a real-world
application but constructed on purpose, shows that the algorithm correctly detects that the
conditions are not fulfilled for that example.

5.2.8 Conclusion

With this work, a reliable, rigorous multiprecision method to compute the Worst-Case
Peak Gain matrix has been developed. It relies on Theory of Verified Inclusion, eigenvalue

3. https://gforge.inria.fr/projects/mpfi/
4. http://www.netlib.org/clapack/

https://gforge.inria.fr/projects/mpfi/
http://www.netlib.org/clapack/
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decomposition to perform matrix powering, some multiple-precision arithmetic basic bricks
developed to satisfy absolute error bounds and a detailed step-by-step error analysis.

A C program has been developed and now can be used as a tool for the implementation
error analysis of LTI systems, and then the design of reliable finite precision digital algorithms
for signal processing and control.

However, some efforts are still required to overcome double precision eigenvalue de-
composition in LAPACK (specially for close-to-instability LTI systems) by using a multiple
precision eigensolver. Additionally, as the proofs on the error bounds are pretty complicated,
they should be formalized in a Formal Proof Checker, such as Coq or HolLight.

5.3 Exploiting Accuracy Adaptation

Having solved the problem of computing the WCPG gain of an LTI filter in the previous
Section 5.2, we can now engage into solving a problem upcoming with the generation of
code for an LTI filter: how large the different intermediate variables in a filter need to be
and what the weight of their MSB and LSB position in a fixed-point environment is. This
problem seems to be of completely different nature at first sight, but it actually is not: the
problem still boils down to determine the compute precision of a numerical algorithm –for
instance the filter code– in order to meet a certain error bound – this time on the maximum
noise introduced by the code. The fact that we speak of MSB and LSB positions and not of
compute precision is merely due to the nomenclature of fixed-point arithmetic.

This Section is based on an article we published in [251].

5.3.1 Introduction

The implementation of a digital filter can be considered as a path from filter specifications
to a physical implementation (DSP device). This process includes generation of a transfer
function, which defines the relation between the inputs and outputs of a filter. Further one
needs to choose a filter structure to be eventually implemented, i.e. a computational scheme,
a specific order of filter evaluation. Finally, there is software and hardware code generation.

However, on each step various issues arise. First of all, every transfer function must be
discretized, which implies the modification of filter. Secondly, while in infinite precision
filter structures (e.g. Direct Forms [203], State-Space [88], Wave [80] etc.) are equivalent,
they are no longer the same objects in finite precision. Since the computational schemes are
different, the round-off errors and consequently quality of structures vary. Finally, software
and hardware implementations are performed under constraints, e.g. power consumption,
area, output error, etc. And on each step of the filter implementation the degradation due to
finite precision must be taken into account in order to produce a reliable implementation.

To unify the above-described process of filter implementation for any Linear Time-
Invariant (LTI) filter and provide reliable implementation, we develop an automatized filter
generator. Its work-flow is described in the Figure 5.2.

In this Section we focus on one of the various steps: the Fixed-Point (FxP) Algorithm gen-
eration step and wordlength optimization. On this step we already know target specifications
and software implementation constraints. Therefore, during this optimization, we naturally
look for a trade-off between area (for hardware implementation) and computational errors. If
we take more bits, the implementation cost arises. If we take less bits, there exist a risk of an
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ℋ(𝑧) SIF
Structure

choice
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structures measures wordlengths target

Figure 5.2 – Automatic filter generator flow.

overflow. Depending on the application, one or even both criteria can be neglected. However,
in the general case on each step of the optimization procedure we need to determine rigor-
ously the Fixed-Point Formats (FxPF), i.e. the most and the least significant bits positions, for
all variables in the filter implementation. These formats must allow no overflow and take
into account computational errors.

There exist various approaches on determining FxPF, such as Affine Arithmetic [181],
or the common approach of numerous simulations [136]. However, these methods are not
suitable for our needs since they do not give any mathematical guarantee on the absence of
overflow for any possible input and tend to overestimate. We, on the other hand, propose a
rigorous algorithm completely based on mathematical proofs.

In Section 5.3.2 we describe the fixed-point arithmetic in question and theoretical back-
ground for our approach. In Section 5.3.3 we define the problem for a filter in a state-space
representation and introduce a two-step algorithm. Error analysis of the algorithm is pre-
sented in Section 5.3.4. Finally, numerical results are provided before conclusion.

Notation: Throughout this Section we continue using the notation introduced before:
matrices are in uppercase boldface, vectors are in lowercase boldface, scalars are in lowercase.
All matrix inequalities and absolute values are considered element-by-element. The matrix 1
denotes a matrix of ones with the appropriate size.

5.3.2 Basic bricks

The Worst-Case Peak Gain theorem

Let ℋ := (𝐴,𝐵,𝐶,𝐷) be a Bounded-Input Bounded-Output stable MIMO LTI filter in
state-space representation:

ℋ
{︂

𝑥(𝑘 + 1) = 𝐴𝑥(𝑘) + 𝐵𝑢(𝑘)

𝑦(𝑘) = 𝐶𝑥(𝑘) + 𝐷𝑢(𝑘)
(5.53)

where 𝑢(𝑘) ∈ R𝑞×1 is the input vector, 𝑦(𝑘) ∈ R𝑝×1 the output vector, 𝑥(𝑘) ∈ R𝑛×1 the state
vector and 𝐴 ∈ R𝑛×𝑛, 𝐵 ∈ R𝑛×𝑞, 𝐶 ∈ R𝑝×𝑛 and 𝐷 ∈ R𝑝×𝑞 are the state-space matrices.

We will use the following approach on deducing the output interval for a filter: suppose
all the inputs are guaranteed to be in a known interval:

∀𝑘, |𝑢𝑖(𝑘)| 6 �̄�𝑖, 𝑖 = 1, . . . , 𝑞. (5.54)

Then, there exists a 𝑁0 such that ∀𝑘 > 𝑁0 the output 𝑦(𝑘) lies in the interval:

|𝑦(𝑘)| 6 ⟨⟨ℋ⟩⟩ �̄�, (5.55)
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Figure 5.3 – Fixed-point representation (here, 𝑚 = 5 and ℓ = −4).

where ⟨⟨ℋ⟩⟩ denotes the so-called Worst-Case Peak Gain (WCPG) matrix of the filter [113].
It can be computed as the ℓ1-norm of the impulse response of the filter. The 𝑁0 can be
determined using reasoning similar to the WCPG error analysis in [252]. There always exists
an input sequence 𝑢(𝑘) such that the equality in (5.55) is reached.

There exist numerous other approaches to determine the output interval, such as involving
Affine Arithmetic [181], which may lead to overestimations, or simulations [136], which in
turn are inefficient and not rigorous.

It can be shown that the WCPG approach gives the smallest interval containing all the
possible values of 𝑦(𝑘) and that the bound (5.55) can be attained. Moreover, in [252] the
authors have published an algorithm to evaluate the WCPG at arbitrary precision.

Fixed-Point arithmetic for filter implementation

The considered filters are implemented using signed FxP Arithmetic, with two’s com-
plement representation [199], [83]. Let 𝑡 be such a FxP number. It can be written as
𝑡 = −2𝑚𝑡𝑚 +

∑︀𝑚−1
𝑖=ℓ 2𝑖𝑡𝑖, where its FxPF (𝑚, ℓ) gives the position of the most (MSB) sig-

nificant and least (LSB) significant bits respectively, and 𝑡𝑖 ∈ B = {0, 1} is the 𝑖th bit of 𝑡 as
shown in Figure 5.3. The wordlength 𝑤 is given by 𝑤 = 𝑚−ℓ+1. The quantization step of the
representation is 2ℓ. Further in this Section the LSB position ℓ sometimes will be substituted
directly with 𝑚− 𝑤 + 1.

The real number 𝑡 is represented in machine by the integer 𝑇 , such that 𝑇 = 𝑡 · 2−ℓ, where
𝑇 ∈ [−2𝑤−1; 2𝑤−1 − 1] ∩ Z. Note that this interval is not symmetric.

Let 𝑦(𝑘) ∈ R be an output of a digital filter. Given the wordlength 𝑤𝑦, determining the
Fixed-Point Formats for 𝑦(𝑘) means to find a MSB vector 𝑚𝑦 such that for each 𝑘

𝑦𝑖(𝑘) ∈ [−2𝑚𝑦𝑖 ; 2𝑚𝑦𝑖 − 2𝑚𝑦𝑖−𝑤𝑦𝑖+1]. (5.56)

Obviously, we are interested in the least possible MSB, which guarantees (5.56): any greater
MSB would yield to a larger quantization step, hence round-off noise, at constant wordlength.

5.3.3 Determining the Fixed-Point Formats

Exact filter

The problem of determining the FxPF for a filterℋ implementation can be formulated as
follows. Letℋ be a filter in a state-space representation (5.53). Suppose all the inputs to be in
an interval bounded by �̄�.

Given the wordlength constraints vector 𝑤𝑥 for the state and 𝑤𝑦 for the output variables
we look for a FxPF for 𝑥(𝑘) and 𝑦(𝑘) such that for any possible input no overflow occurs. We
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wish to determine the least MSB vectors 𝑚𝑦 and 𝑚𝑥 such that

∀𝑘, 𝑦(𝑘) ∈ [−2−𝑚𝑦 ; 2𝑚𝑦 − 2𝑚𝑦−𝑤𝑦+1], (5.57)

∀𝑘, 𝑥(𝑘) ∈ [−2−𝑚𝑥 ; 2𝑚𝑥 − 2𝑚𝑥−𝑤𝑥+1]. (5.58)

Remark 4. Since the filterℋ is linear and input interval is centered at zero, the output interval
is also centered in zero. Therefore, further we will seek to determine the least 𝑚𝑦 and 𝑚𝑥

such that

∀𝑘, |𝑦(𝑘)| 6 2𝑚𝑦 − 2𝑚𝑦−𝑤𝑦+1, (5.59)

∀𝑘, |𝑥(𝑘)| 6 2𝑚𝑥 − 2𝑚𝑥−𝑤𝑥+1. (5.60)

Applying the WCPG to compute MSB positions

Applying the WCPG theorem on the filterℋ yields a bound on the output interval:

|𝑦𝑖(𝑘)| 6 (⟨⟨ℋ⟩⟩ �̄�)𝑖 , 𝑖 = 1, . . . , 𝑝. (5.61)

Denote the bound vector �̄� := ⟨⟨ℋ⟩⟩ �̄�.
We can determine the FxPF for the output of a LTI filterℋ utilizing the following lemma.

Lemma 4. Letℋ = (𝐴,𝐵,𝐶,𝐷) be a BIBO-stable MIMO LTI filter and �̄� be a bound on the
input interval. Suppose the wordlengths 𝑤𝑦 are known and 𝑤𝑦𝑖 > 1, 𝑖 = 1, . . . , 𝑝.

If for 𝑖 = 1, . . . , 𝑝 the MSBs are computed with

𝑚𝑦𝑖 =
⌈︀

log2(𝑦𝑖)− log2
(︀
1− 21−𝑤𝑦𝑖

)︀⌉︀
(5.62)

and the LSBs are computed with ℓ𝑦𝑖 = 𝑚𝑦𝑖+1−𝑤𝑦𝑖 , then for all 𝑘 |𝑦𝑖(𝑘)| 6 2𝑚𝑦𝑖−2𝑚𝑦𝑖−𝑤𝑦𝑖+1

and 𝑚𝑦𝑖 is the least.

Proof. We look for the least 𝑚𝑦 such that (5.59) holds. Since the bound �̄� can be reached, it is
sufficient to require:

�̄�𝑖 6 2𝑚𝑦𝑖 − 2𝑚𝑦𝑖−𝑤𝑦𝑖+1. (5.63)

Solving this inequality for 𝑚𝑦𝑖 we obtain that the smallest integer, which satisfies the above
inequality is

𝑚𝑦𝑖 =
⌈︀

log2(�̄�𝑖)− log2
(︀
1− 21−𝑤𝑦𝑖

)︀⌉︀
. (5.64)

Modification of filterℋ to determine bounds on the state variable x

Using Lemma 4 we can determine the FxPF for the output of a filter. In order to determine
the FxPF for the state variable, we modify the filter ℋ by vertically concatenating the state
vector and the output and include necessary changes into the state matrices.
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Denote vector 𝜁(𝑘) :=

(︂
𝑥(𝑘)

𝑦(𝑘)

)︂
to be the new output vector. Then the state-space

relationship (5.53) takes the form:

ℋ𝜁

⎧
⎨
⎩

𝑥(𝑘 + 1) = 𝐴𝑥(𝑘) + 𝐵𝑢(𝑘)

𝜁(𝑘) =

(︂
𝐼

𝐶

)︂
𝑥(𝑘) +

(︂
0

𝐷

)︂
𝑢(𝑘)

. (5.65)

Hence the problem is to find the least MSB vector 𝑚𝜁 such that (element-by-element)

∀𝑘, |𝜁(𝑘)| 6 2𝑚𝜁 − 2𝑚𝜁−𝑤𝜁+1. (5.66)

Now, applying the WCPG theorem on the filterℋ𝜁 and using Lemma 4, we can deduce the
MSB positions of the state and output vectors for an implementation of the filterℋ.

Taking rounding errors into account

However, due to the finite-precision degradation what we actually compute is not the
exact filterℋ𝜁 but an implemented filterℋ♦𝜁 :

ℋ♦𝜁

⎧
⎨
⎩

𝑥♦(𝑘 + 1) = ♦ℓ𝑥
(︀
𝐴𝑥♦(𝑘) + 𝐵𝑢(𝑘)

)︀

𝜁♦(𝑘) = ♦ℓ𝜁

(︂(︂
𝐼

𝐶

)︂
𝑥♦(𝑘) +

(︂
0

𝐷

)︂
𝑢(𝑘)

)︂
(5.67)

where the Sums-of-Products (accumulation of scalar products on the right side) are computed
with some rounding operator ♦ℓ. Suppose, this operator ensures faithful rounding [197]:

|♦ℓ(𝑥)− 𝑥| < 2ℓ (5.68)

In [61, 180] it was shown that such an operator can be implemented using some extra
guard bits for the accumulation.

Denote the errors due to operator ♦ℓ as 𝜀𝑥(𝑘) and 𝜀𝑦(𝑘) for the state and output vectors,
respectively. Essentially, the vectors 𝜀𝑥(𝑘) and 𝜀𝑦(𝑘) may be associated with the noise which
is induced by the filter implementation. Then the implemented filter can be rewritten as

ℋ♦𝜁

⎧
⎨
⎩

𝑥♦(𝑘 + 1) = 𝐴𝑥♦(𝑘) + 𝐵𝑢(𝑘) + 𝜀𝑥(𝑘)

𝜁♦(𝑘) =

(︂
𝐼

𝐶

)︂
𝑥♦(𝑘) +

(︂
0

𝐷

)︂
𝑢(𝑘) +

(︂
0

𝐼

)︂
𝜀𝑦(𝑘)

, (5.69)

where

|𝜀𝑥(𝑘)| < 2ℓ𝑥 , |𝜀𝑦(𝑘)| < 2ℓ𝑦 .

It should be remarked that since the operator ♦𝑙 is applied 𝜀𝑥(𝑘) ̸= 𝑥(𝑘) − 𝑥♦(𝑘) and
𝜀𝑦(𝑘) ̸= 𝑦(𝑘)− 𝑦♦(𝑘). As the rounding also affects the filter state, the 𝑥♦(𝑘) drifts away from
𝑥(𝑘) over time, whereas with 𝜀𝑥(𝑘) we consider the error due to one step only.

It can be observed that at each instance of time the state and output vectors are computed
out of 𝑢(𝑘) and error-vectors, which can be considered as inputs as well. Thanks to the
linearity of the filters, we can decompose the actually implemented filter into a sum of the
exact filter and an “error-filter” ℋΔ as shown in Figure 5.4. Note that this “error-filter” is
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Figure 5.4 – Implemented filter decomposition.

an artificial one; it is not required to be “implemented” by itself and serves exclusively for
error-analysis purposes.

The filter ℋΔ is obtained by computing the difference between ℋ♦𝜁 and ℋ𝜁 . This filter

takes the rounding errors 𝜀(𝑘) :=

(︂
𝜀𝑥(𝑘)

𝜀𝑦(𝑘)

)︂
as input and returns the result of their propagation

through the filter:

ℋΔ

⎧
⎪⎪⎨
⎪⎪⎩

Δ𝑥(𝑘 + 1) = 𝐴Δ𝑥(𝑘) +

(︂
𝐼

0

)︂
𝜀(𝑘)

Δ𝜁(𝑘) =

(︂
𝐼

𝐶

)︂
Δ𝑥(𝑘) +

(︂
0 0

0 𝐼

)︂
𝜀(𝑘)

, (5.70)

where, the vector 𝜀(𝑘) is guaranteed to be in the interval bounded by 𝜀 := 2ℓ𝜁 .
Once the decomposition is done, we can apply the WCPG theorem on the “error-filter”

ℋΔ and deduce the output interval of the computational errors propagated through filter:

∀𝑘, |Δ𝜁(𝑘)| 6 ⟨⟨ℋΔ⟩⟩ · 𝜀. (5.71)

Hence, the output of the implemented filter is bounded with
⃒⃒
⃒𝜁♦(𝑘)

⃒⃒
⃒ 6 |𝜁(𝑘)|+ |Δ𝜁(𝑘)| . (5.72)

Applying Lemma 4 on the implemented filter and using (5.72) we obtain that the MSB
vector 𝑚♦𝜁 can be upper bounded by

𝑚♦𝜁𝑖 =
⌈︀
log2

(︀
(⟨⟨ℋ𝜁⟩⟩ · �̄�)𝑖 + (⟨⟨ℋΔ⟩⟩ · 𝜀)𝑖

)︀
(5.73)

− log2
(︀
1− 21−𝑤𝜁𝑖

)︀⌉︀
.

Therefore, the FxPF (𝑚♦𝜁 , ℓ
♦
𝜁 ) guarantee that no overflows occur for the implemented filter.

Since the input of the error filterℋΔ depends on the FxPF chosen for implementation, we
cannot directly use (5.73). The idea is to first compute the FxPF of the variables in the exact
filterℋ, where computational errors are not taken into account, and use it as an initial guess
for implemented filterℋ♦𝜁 . Hence, we obtain the following two-step algorithm:

Step 1: Determine the FxPF (𝑚𝜁 , ℓ𝜁) for the exact filterℋ𝜁
Step 2: Construct the “error-filter” ℋΔ, which gives the propagation of the computational

errors induced by format (𝑚𝜁 , ℓ𝜁); then, compute the FxPF (𝑚♦𝜁 , ℓ
♦
𝜁 ) of the actually

implemented filterℋ♦𝜁 using (5.73).
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The above algorithm takes into account the filter implementation errors. However, the
algorithm itself is implemented in finite-precision and can suffer from rounding errors, which
influence the output result. All operations in the MSB computation will induce errors, so
what we actually compute are only floating-point approximations ̂︂𝑚𝜁 and ̂︂𝑚𝜁

♦. In what
follows, we propose error-analysis of the floating-point evaluation of the MSB positions via
(5.62) and (5.73).

5.3.4 Error analysis of the MSB computation formula

Let us consider case of ̂︂𝑚𝜁𝑖
♦ and show afterwards that ̂︂𝑚𝜁𝑖 is its special case. To reduce

the size of expressions, denote

m := log2
(︀

(⟨⟨ℋ𝜁⟩⟩ · �̄�)𝑖 + (⟨⟨ℋΔ⟩⟩ · 𝜀)𝑖
)︀
− log2

(︀
1− 21−𝑤𝜁𝑖

)︀
.

Handling floating-point analysis of multiplications and additions in (5.73) is trivial using
approach by Higham [111]. The difficulty comes from the WCPG matrices, which cannot be
computed exactly. However both approximations ⟨̂⟨ℋ𝜁⟩⟩ and ̂⟨⟨ℋΔ⟩⟩, even if computed with
arbitrary precision, bear some errors 𝜀𝑊𝐶𝑃𝐺𝜁

and 𝜀𝑊𝐶𝑃𝐺Δ
that satisfy

0 6 ̂⟨⟨ℋΔ⟩⟩ − ⟨⟨ℋΔ⟩⟩ 6 𝜀𝑊𝐶𝑃𝐺𝜁
· 1, (5.74)

0 6 ⟨̂⟨ℋ𝜁⟩⟩ − ⟨⟨ℋ𝜁⟩⟩ 6 𝜀𝑊𝐶𝑃𝐺Δ
· 1. (5.75)

Introducing the errors on the WCPG computations into the formula (5.73) we obtain that
what we actually compute is

̂︂𝑚𝜁𝑖
♦ 6

⎡
⎢⎢⎢⎢⎢⎢
m+ log2

⎛
⎜⎜⎜⎝1 +

𝜀𝑊𝐶𝑃𝐺𝜁

𝑞∑︀
𝑗=1

�̄�𝑗 + 𝜀𝑊𝐶𝑃𝐺Δ

𝑛+𝑝∑︀
𝑗=1

𝜀𝑗

(⟨⟨ℋ𝜁⟩⟩ �̄�)𝑖 + (⟨⟨ℋΔ⟩⟩ 𝜀)𝑖

⎞
⎟⎟⎟⎠

⎤
⎥⎥⎥⎥⎥⎥
. (5.76)

The error term in (5.76) cannot be zero (apart from trivial case with zero �̄�). However,
since we can control the accuracy of the WCPG matrices, we can deduce conditions for the
approximation ̂︂𝑚𝜁𝑖

♦ to be off by at most one.

Lemma 5. If the WCPG matrices ⟨⟨ℋ𝜁⟩⟩ and ⟨⟨ℋΔ⟩⟩ are computed such that (5.74) and (5.75)
hold with

𝜀𝑊𝐶𝑃𝐺Δ
<

1

2

(︁
⟨⟨ℋΔ⟩⟩ · 𝜀

)︁
𝑖∑︀𝑝+𝑛

𝑗=1 𝜀𝑖
(5.77)

𝜀𝑊𝐶𝑃𝐺𝜁
<

1

2

(︁
⟨⟨ℋ𝜁⟩⟩ · �̄�

)︁
𝑖∑︀𝑞

𝑗=1 �̄�𝑖
, (5.78)

where ⟨⟨ℋ⟩⟩ := |𝐷|+ |𝐶𝐵|+ |𝐶𝐴𝐵|, then

0 6̂︂𝑚𝜁𝑖
♦ −𝑚𝜁𝑖

♦ 6 1. (5.79)



5.3 Exploiting Accuracy Adaptation 213

Proof. Proof by construction, we reason as follows: since the error-term caused by the WCPG
floating-point evaluation is positive and the ceiling function is increasing, then

̂︂𝑚𝜁𝑖
♦ −𝑚𝜁𝑖

♦ > 0, (5.80)

i.e. the floating-point approximation ̂︂𝑚𝜁𝑖
♦ is guaranteed to never be underestimated. How-

ever, it can overestimate the MSB position by

̂︂𝑚𝜁𝑖
♦ −𝑚𝜁𝑖

♦ 6

⎡
⎢⎢⎢⎢
m−

⌈︀
m
⌉︀

⏟  ⏞  
−1<·60

+ log2

⎛
⎜⎜⎜⎝1 +

𝜀𝑊𝐶𝑃𝐺𝜁

𝑞∑︀
𝑗=1

�̄�𝑗 + 𝜀𝑊𝐶𝑃𝐺Δ

𝑛+𝑝∑︀
𝑗=1

𝜀𝑗

(⟨⟨ℋ𝜁⟩⟩ �̄�)𝑖 + (⟨⟨ℋΔ⟩⟩ 𝜀)𝑖

⎞
⎟⎟⎟⎠

⎤
⎥⎥⎥⎥⎥⎥
. (5.81)

The approximation ̂︂𝑚𝜁𝑖
♦ overestimates at most by one bit if and only if the error term is

contained in the interval [0, 1), i.e. if

0 6 log2

⎛
⎜⎜⎜⎝1 +

𝜀𝑊𝐶𝑃𝐺𝜁

𝑞∑︀
𝑗=1

�̄�𝑗 + 𝜀𝑊𝐶𝑃𝐺Δ

𝑛+𝑝∑︀
𝑗=1

𝜀𝑗

(⟨⟨ℋ𝜁⟩⟩ �̄�)𝑖 + (⟨⟨ℋΔ⟩⟩ 𝜀)𝑖

⎞
⎟⎟⎟⎠ < 1. (5.82)

Hence, using the above condition we can deduce the upper bounds on the 𝜀𝑊𝐶𝑃𝐺𝜁
and

𝜀𝑊𝐶𝑃𝐺Δ
:

0 6

𝜀𝑊𝐶𝑃𝐺𝜁

𝑞∑︀
𝑗=1

�̄�𝑗 + 𝜀𝑊𝐶𝑃𝐺Δ

𝑛+𝑝∑︀
𝑗=1

𝜀𝑗

(⟨⟨ℋ𝜁⟩⟩ �̄�)𝑖 + (⟨⟨ℋΔ⟩⟩ 𝜀)𝑖
< 1. (5.83)

Since all the terms are positive, the left inequality is always true. The right inequality in (5.83)
is satisfied for instance if

𝜀𝑊𝐶𝑃𝐺𝜁

𝑞∑︀
𝑗=1

�̄�𝑗

(⟨⟨ℋ𝜁⟩⟩ · �̄�)𝑖
<

1

2

𝜀𝑊𝐶𝑃𝐺Δ

𝑛+𝑝∑︀
𝑗=1

𝜀𝑗

(⟨⟨ℋΔ⟩⟩ · 𝜀)𝑖
<

1

2
. (5.84)

Rearranging terms, we obtain following inequalities on the WCPG computation with error:

𝜀𝑊𝐶𝑃𝐺𝜁
<

1

2
· (⟨⟨ℋ𝜁⟩⟩ �̄�)𝑖

𝑞∑︀
𝑗=1

�̄�𝑗

𝜀𝑊𝐶𝑃𝐺Δ
<

1

2
· (⟨⟨ℋΔ⟩⟩ 𝜀)𝑖

𝑛+𝑝∑︀
𝑗=1

𝜀𝑗

. (5.85)

Unfortunately, the above results cannot be used in practice, since they depend themselves
on the exact WCPG matrices.
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It can be shown that ⟨⟨ℋ⟩⟩ is a lower bound of the WCPG matrix. We can compute this
matrix exactly. Obviously,

(︁
⟨⟨ℋΔ⟩⟩ · 𝜀

)︁
𝑖∑︀𝑝+𝑛

𝑗=1 𝜀𝑖
6

(⟨⟨ℋΔ⟩⟩ · 𝜀)𝑖∑︀𝑝+𝑛
𝑗=1 𝜀𝑖

(5.86)

(︁
⟨⟨ℋ𝜁⟩⟩ · �̄�

)︁
𝑖∑︀𝑞

𝑗=1 �̄�𝑖
6

(⟨⟨ℋ𝜁⟩⟩ · �̄�)𝑖∑︀𝑞
𝑗=1 �̄�𝑖

. (5.87)

Hence, if the WCPG matrices in the right sides of (5.85) are substituted with their lower
bounds, the condition (5.83) stays satisfied and we obtain bounds (5.77) and (5.78).

Analogously, Lemma 5 can be applied to the computation of ̂︁𝑚𝜁𝑖 with the terms concern-
ing filterℋΔ set to zero.

In order to guarantee the output MSB position to be optimal, an instance of the Table
Maker’s Dilemma [197] must be solved. This is due to the simplification by using the triangle
inequality in (5.72), which basically requires both filters ℋ𝜁 and ℋΔ reach the worst-case
bound with the same input sequence.

5.3.5 Complete algorithm

The two-step algorithm, presented in Section 5.3.3 takes into account accumulation of
computational errors in a filter over time and Lemma 5 presents error-analysis of the MSB
position computation procedure. However, one additional fact has not been taken into
account.

In most cases the MSB vectorŝ︁𝑚𝜁 (computed on Step 1) and̂︁𝑚♦𝜁 (computed on Step 2) are
the same. However, in some cases they are not, which can happen due to one of the following
reasons:

— the accumulated rounding error due to the FxPF (̂︁𝑚𝜁 ,̂︀ℓ𝜁) makes output of the actually
implemented filter pass over to the next binade; or

— the floating-point approximation ̂︁𝑚♦𝜁 is off by one.

Moreover, if the MSB position after Step 2 of the algorithm is increased, the LSB position
moves along and increases the error. Therefore, the modified format must be re-checked.
Hence, the FxPF determination algorithm gets transformed into the following three-step
procedure:

Step 1: Determine the FxPF (̂︁𝑚𝜁 ,̂︀ℓ𝜁) for the exact filterℋ𝜁 ;
Step 2: Construct the “error-filter”ℋΔ, which shows the propagation of the computational

errors induced by format (̂︁𝑚𝜁 ,̂︀ℓ𝜁); then, compute the FxPF (̂︁𝑚♦𝜁 ,̂︀ℓ
♦
𝜁 ) of the actually

implemented filterℋ♦𝜁 ;

Step 3: If ̂︁𝑚♦𝜁𝑖 == ̂︁𝑚𝜁𝑖 , then return (̂︁𝑚♦𝜁 ,̂︀ℓ
♦
𝜁 );

otherwise ̂︁𝑚𝜁𝑖 ←−̂︁𝑚𝜁𝑖 + 1 and go to Step 2.
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states output
𝑥1(𝑘) 𝑥2(𝑘) 𝑥3(𝑘) 𝑦(𝑘)

Step 1 6 7 5 6

Step 2 6 7 6 6

Step 3 6 7 6 6

Table 5.2 – Evolution of the MSB positions vector through algorithm iterations

5.3.6 Numerical results

The above described algorithm was implemented as a C library, using GNU MPFR 5 [86]
version 3.1.12, GNU MPFI 6 version 1.5.1 and the WCPG library [252].

Consider the following example: letℋ be a random stable filter with 3 states, 1 input and
1 output. Suppose the inputs are in an interval absolutely bounded by �̄� = 5.125. In this
example we set all the wordlength constraints to 7 bits, however our library supports the
multiple wordlength paradigm.

The results of the work of our algorithm can be observed in Table 5.2. On the Step 1 we
deduce the MSB positions for the filter ℋ, which does not take computational errors into
account. These MSBs serve as an initial guess for the Step 2. We compute the vector �̄�𝜁 and
construct the “error-filter”ℋΔ. Taking into account the error propagation yields changes in
the MSB positions: the rounding errors force the third state 𝑥3(𝑘) to pass over to the next
binade. However, moving the MSB yields larger quantization step and an addition step is
required. Step 3 verifies that the FxPF deduced on the Step 2 guarantees no overflow.

We can verify the result by tracing the state and output vectors in two cases: the exact
vectors 𝑦(𝑘) and 𝑥(𝑘); and the quantized vectors 𝑦♦(𝑘) and 𝑥♦(𝑘). The quantized vectors are
the result of an implementation of the filter ℋ with FxPF deduced on the Step 1. For each
state and output we take an input sequence which makes the state respectively output attain
the theoretical bound. However, this sequence is not guaranteed to maximize the quantized
error.

In Figure 5.5 we can observe that the exact vector 𝑦(𝑘) attains the bound computed with
the WCPG theorem. The quantized output stays within the bound �̄�♦ for the implemented
filter but passes over the bound of the exact filter. However, as the bound �̄� is far from the
next binade, the MSB position is not changed and the computational errors do not result in
overflow.

For the third state 𝑥3(𝑘), its bound �̄�3 is very close to the 2𝑚𝑥3 − 2ℓ𝑥3 and taking into
account the filter computational errors yields passing to the next binade. It can be clearly
observed in Figure 5.6 that the quantized state passes over the value 2𝑚𝑥3 − 2ℓ𝑥3 . If the
computational errors were not taken into account, the initial format (deduced on the Step 1)
would result in overflow.

Therefore, we observed that deducing the FxPF without taking into account the computa-
tional errors can result in overflow but our approach guarantees a reliable implementation
without overestimation.

5. http://www.mpfr.org/
6. https://gforge.inria.fr/projects/mpfi/

http://www.mpfr.org/
https://gforge.inria.fr/projects/mpfi/
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Figure 5.5 – The exact and quantized outputs of the example. Quantized output does not pass
over to the next binade.
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Figure 5.6 – The exact and quantized third state of the example. Quantized output passes
over to the next binade.

5.3.7 Conclusion on Worst-Case Peak Gain Exploitation

We give an algorithm to determine the FxPF for all variables of a LTI filter, where the
computation errors are taken into account. We ensure, by construction, that no overflow
occurs. However, the computed MSB positions can overestimate at most by one bit. In order
to guarantee no overestimation at all, an instance of the TMD must be solved. Our algorithm
can be extended to any LTI filter realization (Direct Forms, Lattice filters, etc.) using the
Specialized Implicit Framework (SIF) tool [113]. SIF enables unification of various LTI filter
realizations for analysis, comparison and FxP code generation. Therefore, this work is an
essential basic brick for the automatic filter-to-code conversion.

5.4 A priori error bounds: still a long way to go

In this Chapter 5, we have considered numerical algorithms under the aspect of adapting
their compute precision to rigorously meet an a priori error bound. In the first case, described
in Section 5.2, it was up to the multiple-precision algorithm itself to adapt its compute
precision to meet a dynamic a priori error bound. In Section 5.3, we then used that algorithm
to perform static compute precision adaption –by finding the right MSB and LSB positions in
fixed-point arithmetic– for code generation for an LTI filter.

We think that this novel approach to the precision vs. accuracy issue of numerical algo-
rithms is an interesting field of research for future work: similarly as we did in Chapter 3,
when we moved from single floating-point operations, like one single fused-multiply-add
operation described in Chapter 3, Section 3.4, to more high-level floating-point operations
like vector 2-norms, as we described them in Chapter 3, Section 3.6, we are now to move from
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single multiple-precision operations, like they are coded in libraries as MPFR, to “multiple-
accuracy” algorithms that adapt their compute precision to this dynamic a priori accuracy
goal. Recent research has made us reconsider basic steps in mathematical function implemen-
tation, such as polynomial approximation with a priori error control [159]. This research is
still too preliminary to be reported here but it clearly does follow the lead of a priori error
bound work set out here. As a matter of course, there is still a long way to go.





CHAPTER 6
Conclusion and future work

Et ceterum censeo computationem numericam sim-
plicorem et securam esse reddendam.

with Cato the elder

6.1 An enhanced Floating-Point environment: work done so far

For this work, we came up with the observation that the IEEE754 Standard for Floating-
Point Arithmetic [117] is a solid base for proven and reliable floating-point arithmetic but that
it is too fine-grained for the exa-scale world. Extensions to the Standard are hence required to
move on.

We started with an introduction to the environment defined by IEEE754-2008 and the
open implementatory issues that are still to be found on modern computer systems.

We then looked into various operations and associated floating-point algorithms to com-
plete the floating-point environment, e.g. with respect to heterogeneous operations or cor-
rectly rounded decimal-to-binary input operations, and, in a second step, how to enhance the
IEEE754 environment. We proposed algorithms for mixed-radix floating-point comparisons,
allowing a binary and a decimal floating-point number to be compared, and looked into gen-
eral mixed-radix arithmetic. Our work on a mixed-radix fused-multiply-and-add operation
where inputs and outputs of both radices 2 and 10 could freely be mixed proved harder than
we thought and remains a certain challenge.

We also proposed extended precision floating-point operations in the precision range
starting at double precision and ranging up to about 512 bits, covering a precision range
where general purpose arbitrary precision libraries cannot yet leverage their optimality in
terms of asymptotic complexity.

Enhancements to the floating-point environment can also be made through operations at a
higher abstraction level. We tried to illustrate this point at the instance of a faithfully rounded
two-norm algorithm that is easy to parallelize, free of spurious overflow and underflow and
up to 4.5 times faster than the existing reference algorithm.

We then passed to a meta-level where we do no longer try to design numerical codes by
hand but instead “use” numerical code generation to produce provably accurate numerical
codes. The challenge here is that numerical code generation is not yet ready to “use”. We
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must design them. We took this challenge for the example of mathematical functions. We
first looked into classical elementary functions, such as 𝑒𝑥, log, sin, cos, in order to see how
the different basic bricks for their implementation, like argument reduction, polynomial
approximation and reconstruction using tables, could be automatically analyzed for accuracy
and transformed into floating-point code. In a second step we got involved in generating code
for functions that are less common and less described in the literature than, say, exponential.
For these functions, most of them being special functions, code generation has less to bother
about algebraic argument reduction but more with optimal domain splitting and polynomial
approximation. However, to compute such a polynomial approximation, a chicken-and-
egg problem is encountered, as a code is needed to evaluate the given function in order to
compute the polynomials that end up in the generated code. We solved this issue for a certain
type of functions for which evaluation through computation and evaluation of series with
recurrences in the series’ coefficient is possible.

This work on code generation for mathematical functions made us exhibit a close link
between the steps required to generate code for a mathematical function and the ones required
for code generation of a Linear Time Invariant filter: approximation with polynomials resp.
rational functions, choice of an evaluation scheme, precision adaption per basic operation,
final accuracy proof. We worked towards integration of the two software toolchains, however,
we encountered certain issues.

This work resulted in yet another way of considering enhanced floating-point arithmetic:
in certain steps of code generation for Linear Time Invariant filters, a certain measure, for
instance the Worst Case Peak Gain matrix of the filter, needs to be computed to allow the
fixed-point arithmetic formats to be chosen in the final implementation. In order for the final
filter implementation to be reliable, the Worst Case Peak Gain matrix needs to be computed
reliably. We perform this computation in floating-point arithmetic but require certain features
of multiple precision to be available, such as dynamic adaptation of the precision a variable
bears in a code. This way we are able to guarantee that an a priori error bound is satisfied
for the results produced by the algorithm. Hence, the fixed-point arithmetic code generation
step is reliable in the sense that it never underestimates the most-significant-bit position of
variable in the filter’s code. It is also reliable in the sense that the possible overestimate of
that position is also bounded, typically by one single bit.

This last work seems important to us in particular as it shows the long-term possibilities
of an enhanced floating-point environment. Using non-standard multiple precision floating-
point arithmetic, we implemented a numerical algorithm computing a certain measure with
an error bounded in an a priori manner, just to use this algorithm in a code generator to
finally generate a filter algorithm in fixed-point arithmetic that is reliable, accurate and free of
overflow.

To sum up again, we have worked at enhancing the floating-point environment at the
following levels:

— complete the implementation of IEEE754 on common systems,

— extend the choice of compute precisions in the mid-precision range,

— extend the environment with mixed-radix operations,

— going to high level operations such as faithfully rounded Euclidian norms,

— passing to the meta-level with numerical codes generating other numerical codes, for
instance implementations of mathematical functions,
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— passing from elementary functions to special functions for which no reference imple-
mentation is available and

— using features offered by multiple precision to provide algorithms for certain measures
with a priori bounds in order

— to generate reliable fix-point implementations of Linear Time Invariant Filters.

6.2 Future work

Rich of this experience, we are eager to take up other challenges, which come up in
particular when restrictions we imposed on the objects we worked with are removed. For
instance, with our work on an enhanced IEEE754 environment, we were always concerned
of standard compliance and accuracy but less of the energy consumption. In our work on
code generation for mathematical functions, we only looked at transcendental, univariate
functions, setting aside all bivariate or multivariate numerical expressions that can come up in
numerical codes. However, we have never looked into the energy consumption perspective of
a –possibly weakened– IEEE754 environment, code generation for more general numerically
challenging compute kernels or automatized analysis of filters that are not easily subsumed
as Linear Time Invariant Filters, such as adaptive or Kalman filters.

This research project is divided into 3 possible axes, described in Sections 6.2.1 through 6.2.3
below. We have written these three sections in a style that should allow us to easily transpose
them into Ph.D. research subjects. As a matter of course, we intend to work in these three
directions, be it in cooperation with Ph.D. students or be it without.

These three research directions which we clearly identify as the next three steps do not
form an exhaustive list of fields we want to work on. Section 6.2.4 gives a more general, less
project-driven view on our planned research for the next couple of years.

Finally, our work started in the fields of mixed-radix operations and mathematical function
implementation is not completely finished and it will stay one of our matters of interest at
least in the short term.

6.2.1 The energy perspective of floating-point environment features

Computing is more and more limited by the amount of energy spent by the compute
systems that are used. Software to recover simplified hardware can be an answer.

Framework of the project The IEEE754 Standard’s floating-point environment provides a
certain amount of features that certainly ease debugging and make floating-point arithmetic
more reliable, as for example IEEE754 status flags, dynamic rounding modes, non-standard
exception handling [117]. Hardware and software implementations of IEEE754 must compute
these additional results, which requires a certain amount of energy.

However, these features are hardly used in numerical applications. Even more, IEEE754
features like correctly rounded basic operations or just the use of IEEE754 binary64 numbers
have impact on the energy spent by a computer system. In particular, memory access is
energy-intensive [103].

In the recent years, there have been several attempts to address this issue. There are typi-
cally two main tendencies: reducing energy consumption by reducing the number of memory
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accesses, by techniques called Communication Avoidance [103], and by more disruptive pro-
posals requiring a complete redesign of compute hardware, with number systems like the so
called Unum [107].

With this project we would like to look on a middle ground between these two competing
approaches. We would like to consider simplifications to the IEEE754 environment that
would result in lowered energy consumption while maintaining accuracy at a high level. We
would like to consider in particular a novel approach where software recovers rare cases that
are no longer handled in simplified hardware. Computer arithmetical approaches to memory
transfers, such as writing only the high order 32 bit word of a double precision number, also
fall into this category.

This research can look into:

— Estimation of the energy cost of rarely used IEEE754 features (flags, rounding modes),
while proposing a software emulation layer for the rare occasion they are needed as
well as for compliance reasons.

— Feasibility of mixed-precision computations maintaining precision-sensitive parts in
registers and caches, while writing rounded results back to memory. This may require
working on enhancements on the hardware side.

— Use of extremely low precision formats, such as binary16 (half-float) [117].

— Use of compensated algorithms [97] together with possible use of significance arith-
metic [69]. The novelty would lay in compensating just at the points where this has an
effect.

Challenges This project has to confront a certain number of challenges:

— Hardware vendors are pretty discrete with numbers showing energy consumption of
certain parts of the general-purpose processors they sell. To our knowledge there exist
only very few studies on the energy consumption of general-purpose floating-point
hardware environments that are supposed to comply with the IEEE754-2008 stan-
dard [260]. This project will have to work out means to estimate energy consumption of
floating-point operations in general purpose processors.

— In order to perform the proposed studies on energy consumption, access to and under-
standing of large scale applications that can serve as objects of analysis and showcases
must be gained.

— In order to try out mixed-precision arithmetic, compensation techniques or other arith-
metic approaches, a certain accuracy model of the applications to be optimized for
energy consumption is required. Such accuracy models are generally pretty hard to
obtain.

We should also add that most of our previous work was on the software side of Computer
Arithmetic. This project must consider both the hardware and the software implications of
the energy perspective of IEEE754-2008 floating-point environments. Questions of hardware-
software co-design will arise [46]. We are eager to take up this challenge.

Possible outcomes It is expected that this project gives a better understanding of the energy
perspective of certain features of the floating-point environment and on how a good balance
between accuracy of the results and energy consumption can be obtained. Given the wideness
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of the field of possible numerical applications, this project, in particular when implemented
as as Ph.D. research project, will not be able to give a conclusive answer but only a first
understanding of further fields to be studied.

Deliverables This project should start off with the following deliverables in mind:

— Tools and software to estimate the energy consumption when code is run in one or the
other floating-point environment.

— Accuracy benchmarks for mixed-precision, compensated, significance arithmetic-driven
codes.

— A production-level application using low precision to save up on energy, possibly in
the fields of deep-learning, signal processing or linear algebra.

6.2.2 Identification of precision-sensitive kernels for code generation

Code generation for large-scale numerical applications is currently out of reach, yet.
Significant performance gain is however expected from the speed up obtained with code
generation for certain precision-sensitive kernels.

Framework of the project Code generation for univariate mathematical function generation
has been shown to be feasible, e.g. in Chapter 4 of this work. Numerical applications however
need more than univariate functions; they contain quite a few number of expressions that are
both multivariate and a bottleneck to the applications’ performance and accuracy.

A very easy-to-understand example of such accuracy and performance bottlenecks classi-
cally are sum reductions [31,61]. Floating-point addition is most sensible to amplify rounding
errors due to cancellation [111]. In many applications, it is hence the additions that dictate
the common compute precision, like IEEE754 binary64, binary128 etc. In other parts of the
code using a larger precision might however not be required as it just lowers the overall code
performance.

It is hence reasonable to try to identify kernels in numerical code that are most precision-
sensitive and to apply code generation to these parts. The intended code generator is supposed
to take just mathematical expressions in input, together with accuracy bounds to achieve.
The code generator can then apply intensive optimization techniques for this kernel, both for
accuracy and performance.

The challenging part here is the integration of the kernels, for which code generators may
want to choose the input and output formats, into the existing applications [61].

On the other hand, the proposed approach on code generation for compute-intensive
and precision-sensitive kernels opens yet another, novel possibility for floating-point envi-
ronments: performance-wise, these kernels do not actually need to cover the whole range
of possible inputs. When a reference kernel is available –which might just be generated
with no performance optimization and only accuracy in mind– there may be one or several
performance-optimized kernels for the mostly used ranges of inputs. Simple tests use either
the reference kernel or the optimized one.

A valid question is how the code generator would know which range of inputs it would
be reasonable to apply code optimization on. We claim that this decision can actually be
inferred from simple statistics made on reference code, similarly to what has already been
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done for mathematical functions [210]. It is part of this project to confirm –or refute– this
claim.

As no human intervention is required for a code generator for numerical kernels, the
three steps consisting in reference code statistics, code generation and final execution of the
generated code could actually be integrated. An application would start out with reference
kernels which would be enhanced with call and input range statistics code, running in parallel.
Still in parallel, code generation would provide optimized versions of the numerical kernels,
whenever a particularly compute-intensive input range is identified. These new, optimized
kernels could then dynamically be bound to the running code. Code optimization hence
becomes an on-the-fly process. The aims is to investigate the feasibility of this dynamic
approach.

Challenges This project is challenged by a number of issues that might be difficult to
resolve:

— Its goals is intentionally not well-defined in the sense that most of numerical problems
can be seen as multivariate functions to be implemented; however it is clear that defining
for example a QR-decomposition of a 𝑛× 𝑛 matrix as a function in 𝑛2 arguments makes
less sense. It is hence necessary in this project to clearly define the domain in which
working on multivariate functions for code generation makes actually sense.

— Code generation for mathematical functions is based, in its main steps, on the possi-
bility to reliably determine tight upper bounds of approximation errors [40] (see also
Chapter 4.2.2). There is no equivalent approach available for multivariate expressions.
We expect issues with the combinatorial explosion due to the higher dimensionality.

— The on-the-fly code generation process requires code generation to run in a fully au-
tomatic manner without requiring any human supervision or intervention. The code
generators for mathematical functions and Linear Time Invariant Filters, discussed in
Chapter 4, are mainly automated but require some manual intervention in their input
setup, like for example with code generation parameters, and in their supervision.

— In order to demonstrate the efficiency of the proposed compute kernel approach, show-
case and benchmark numerical applications will be needed. Cooperation with teams
from industry who have access to production level numerical applications needs to be
established for this project.

Possible outcomes The possible outcomes of this project are on the one hand a better under-
standing of what can be understood as a compute kernel and what numerical optimizations
can be performed, in scientific compute applications. On other hand, the project may open up
our vision on a modern floating-point environment even more, typically by establishing the
possibility of on-the-fly optimization of numerical codes.

Deliverables This project is supposed to produce the following deliverables:

— a clear analysis on the various types of compute-intensive, precision-sensitive multi-
variate expressions that figure in compute kernels,

— a prototype implementation of a code generator for a chosen class of compute kernels,
including sum-of-products and, more generally, sums-of-univariate-expressions, with a
priori error bounds,
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— a prototype implementation of input range statistics code for exploitation with the code
generator, together with a representative testbench of production-level numerical code

— and first tests on a few applications trying to validate –or invalidate– the dynamic
kernel optimization scheme set out above.

6.2.3 Floating and fixed-point code generation for Kalman filters

Linear Time Invariant Filters are used to amplify or attenuate certain frequencies in a
given signal. The signal, and hence the output, is supposed to be exact, though. Kalman
filters are used to filter measurement noise out of a signal. Their implementation, especially
in fixed point arithmetic, is even more challenging.

Framework of the project Enhanced computer arithmetic has been shown to provide effi-
cient tools for the analysis and subsequent code generation of Linear Time Invariant Filters,
see e.g. Chapter 5 of this work. Reliable code can be generated for such filters provided de-
pendable advanced multi-precision floating-point codes for the analysis of their dynamical
behavior.

Linear Time Invariant Filters are used to amplify or attenuate certain frequency bands
in a signal’s spectrum. They are hence helpful to select certain bands in a spectrum before
submitting them to other signal processing, such as demodulation or to prevent controlled
system from oscillation, by removing the system’s resonance frequencies [88]. They are also
helpful when measurement noise as particular spectral components that require to be filtered
out. However, Linear Time Invariant Filters cannot be used to filter out measurement noise
by comparing a measured signal to a system model.

Kalman filters [29] are used to match a dynamical system’s model in real time to an input
signal of measurements, hence filtering out noise in that input stream. Additionally, Kalman
filters allow unobservable signals, i.e. signals for which no direct measurement process is
available, to the estimated, based on the system model and the input of observable quantities.

Kalman filters are special cases of Stratonovich-Kalman-Bucy filters and closely related
to analysis of hidden Markov models [115], which, in turn, are intensively used in genome
sequencing, speech recognition and machine learning in general [91].

The basic idea behind a Kalman filter is a feedback loop adjusting a model’s internal
state by comparing the model’s predicted output to the measurements fed into the filter.
The model’s internal state can then be used to provide output, freed from the random noise
nature of the input, as well as additional signals. Software phase-locked-loops (PLLs) [60] are
extremely simplified versions of Kalman filters. Those PLLs can be used to perform signal
demodulation, something Linear Time Invariant Filters cannot do.

Similarly to Linear Time Invariant Filters, the challenging part when implementing
Kalman filters using floating-point and, in particular, fixed-point arithmetic, to predict the
dynamic ranges of all variables, i.e. internal signals, that occur in the implementation, as
well as the resulting roundoff errors. For Kalman filters, this is particularly challenging, as
these filters manipulate signals that are intrinsically probabilistic variables. Classical range
and error analyses often work with intervals that express worst-case bounds. Probabilistic
considerations are typically left out. Applying this classical methodology to Kalman filters
hence provides very pessimistic bounds, in particular, when taking into account that Kalman
filters are self-correcting, due to their internal feedback loop [151].
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Nevertheless, the basic bricks constituting a Kalman filter, i.e. the prediction and correction
computation steps, are often, taken by themselves, linear filters. Applying the existing
methodology to analyze them and to implement them with automatically generated code is
thus possible. Starting with this observation, this project is concerned with the design of a
Kalman filter analysis and implementation approach that can be transformed into a Kalman
filter code generator.

Challenges This project, concerned with the analysis of and code generation for Kalman
filters, faces several challenges among which figure the following ones:

— Kalman filters manipulate probabilistic variables, which is a concept uncommon to
computer arithmetic. They are self-correcting, as long as they stay locked onto the input
stream; range overflows or extreme approximation errors may hence be tolerable as
long as they do not prevent the filter from staying locked. However, the modeling of
the probabilistic behavior of the input signal is often approximate, which may hide
potential issues.

— Kalman filters contain a feedback loop which prevents the use of pure naive interval
arithmetic or even Taylor Models for range and roundoff error analysis.

— As basic bricks, these filters require code generation for the predictor and corrector
computational steps. These often imply matrix operations that are ill-conditioned and
hence hard to implement in fixed-point arithmetic.

Possible outcomes The use of Kalman filters is widespread in industry; reliability is an issue.
The main, eventual, possible outcome of this research project is providing a methodology for
the reliable implementation of Kalman filters, supported as much as possible, by automatic
code generation. Industrial applicability would be immediate.

Given the challenges which this project must take on, a first deep understanding of the
required basic bricks and methodology paving the road to implementation of a code generator
for Kalman filters should already be a reasonable outcome of this project.

Deliverables This project should start off with the following deliverables in mind:

— a unified way of modeling Kalman filters with a framework that allows for their
computer-arithmetic centered analysis,

— tools and methodology for error and range analysis in Kalman filters,

— a prototype of a code generator for Kalman filters, in floating and fixed-point arithmetic

— and significant showcase example Kalman filters, together with their –possibly generated–
implementations, taken from applicative domains.

6.2.4 Open-Ended Future Research Directions

In addition to the mid-term research projects set out in the previous Sections 6.2.1
through 6.2.3, we would like, in the long run, look into the following fields of research.
This part can also be done in a less formalized manner, e.g. without advising Ph.D. students.
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Code translation and code generation for Interval Arithmetic Interval Arithmetic is an
efficient tool when it comes to providing reliable numerical results, without going through
tedious error analysis [217]. However, Interval Arithmetic is plagued by certain effects
that may make its result reliable but useless because not sufficiently accurate. The most
preponderant issue here are the decorrelation effect and the wrapping effect.

Interval Arithmetic can hence seldom be used as a drop-in replacement too floating-point
arithmetic, which would somehow make legacy floating-point applications instantly, almost
magically, reliable.

Interval Arithmetic can be enhanced, for example using Taylor Models [130], to prevent,
at least for certain classes of problems, the negative impacts of plain Interval Arithmetic. The
theory of verified inclusions [225] is another approach to get around these issues. However,
these enhanced approaches require the structure of an existing code to be modify profoundly
which eliminates their application as a drop-in replacement to floating-point arithmetic.

It might seem that numerical code analysis, translation and finally code regeneration
might allow for transformations that start out with floating-point code and transform it,
using enhanced Interval Arithmetic. We would like to address this point in a mid- long-term
timeframe.

Numeric-symbolical computations The second long-term research area we would like to
invest in, symbolic-numeric methods, would study how rigorous, mathematically sound
results can be obtained using approximate, but still proven and reliable computational tech-
niques. The resulting software could then lead to safe computer-based mathematical results,
similar to the ones provided by a Computer Algebra System, but utilizing classical techniques
from scientific computing. In particular, we have thought about multiprecision interval arith-
metic techniques which, used with a compiler and library environment supporting it, could
on the one hand provide reasonably fast rigorous answers. Such compiler systems would
also allow for a more tight coupling of multiprecision (interval) arithmetic with standard
compilation, hence enabling dynamic precision adaptation for compiled code and avoiding
indirect memory accesses and heap memory handling.
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Résumé :
Ce travail commence par une analyse succincte de la norme IEEE754 sur l’arithmétique
flottante, dans sa version de 2008. Une comparaison des opérations requises par la norme
avec la liste de celles implantées dans l’environnement flottant d’un système actuel montre
que certaines opérations, par exemple celles qui sont hétérogènes dans leurs arguments,
manquent encore. Des algorithmes sont proposés pour ces problèmes toujours ouverts. Ce
travail part ensuite de cette analyse pour proposer des extensions possibles futures de la
norme. Celles-ci sont diverses : des ajouts comme la précision étendu ou bien des opérations
plus haut niveau comme des normes euclidiennes ainsi que des opérations qui permettraient
de mélanger des nombres en virgule flottante des bases binaire et décimales.

Ce manuscrit essaie ensuite de passer du niveau de codes numériques manuellement
écrits à des générateurs de codes numériques. Cette approche meta-arithmétique est illustrée
à l’exemple de fonctions mathématiques comme log, sin, cos ou encore spéciales, définies par
des équations différentielles. Les techniques proposées montrent que la génération de codes
numériques est un moyen efficace pour étendre l’environnement flottant moderne.

Enfin, ce travail considère des algorithmes en virgule flottante fiable, garantissant une
précision en sortie spécifiée a priori. Ces algorithmes sont ensuite exploités pour la génération
de codes en virgule fixe implantant des filtres linéaires invariants dans le temps.

Mots-clefs :
Arithmétique en virgule flottante et en virgule fixe, précision étendue et arbitraire, arithmé-
tique en base mixte, arrondis correct et fidèle, fonctions mathématiques, génération de code,
Metalibm, découpage en sous-domaines, filtres LTI, matrice Worst Case Peak Gain

Abstract:
This works starts with shedding some light on the 2008 version of the IEEE754 Standard for
Floating-Point Arithmetic and its realization in the Floating-Point environment offered by
current systems. Analyzing the parts of the Standard that are still missing, such as support
for heterogeneous operations, it proposes algorithmic solutions to these open issues. The
work then extends these considerations to possible future extensions to the Standard. These
extensions come in manifold aspects: classical enhancements such as extended precision or
higher level operations such as faithfully rounded Euclidian Norms as well as operations that
allow the binary and decimal floating-point formats to be mixed.

It then tries to pass from the level of manually written numerical codes to code gener-
ation of numerical codes. These meta-arithmetic approaches are studied at the example
of mathematical functions such as log, sin, cos or even special functions, defined by differ-
ential equations. Code generation is shown to be an effective way of providing a modern
floating-point environment.

Finally, this work looks into reliable floating-point algorithms, providing a priori error
guarantees on their output. These algorithms are utilized as a convenience for the generation
of fixed-point codes for the implementation of Linear Time Invariant Filters.

Keywords:
Floating-point and Fixed-Point Arithmetic, Extended and Multiple Precision, Mixed-Radix
Arithmetic, Correct and Faithful Rounding, Mathematical Functions, Code Generation, Met-
alibm, Domain Splitting, Linear Time Invariant Filters, Worst Case Peak Gain
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