
Towards the automatic implementation of
libm functions

Presentation at Intel - Nizhniy Novgorod

Florent de Dinechin
Christoph Quirin Lauter

Arénaire team
Laboratoire de l’Informatique et du Parallélisme

École Normale Supérieure de Lyon

Nizhniy Novgorod, 30 july 2007

ECOLE NORMALE SUPERIEURE DE LYON



History of libm function
development

History of libm function development

Automatization of the implementation process

Let’s try it out...

Conclusions

Towards automatic implementation of libm functions - Intel Nizhny Novgorod - 30 july 2007 1



Function development by Arénaire members – 1

First function in crlibm

exp(x) by David Defour

correctly rounded in two approximation steps

portable C code

integer library for second step

complex, hand-written proof

duration: a Ph.D. thesis

Towards automatic implementation of libm functions - Intel Nizhny Novgorod - 30 july 2007 2



Function development by Arénaire members – 1

First function in crlibm

exp(x) by David Defour

correctly rounded in two approximation steps

portable C code

integer library for second step

complex, hand-written proof

duration: a Ph.D. thesis

Towards automatic implementation of libm functions - Intel Nizhny Novgorod - 30 july 2007 2



Function development by Arénaire members – 1

First function in crlibm

exp(x) by David Defour

correctly rounded in two approximation steps

portable C code

integer library for second step

complex, hand-written proof

duration: a Ph.D. thesis

Towards automatic implementation of libm functions - Intel Nizhny Novgorod - 30 july 2007 2



Function development by Arénaire members – 1

First function in crlibm

exp(x) by David Defour

correctly rounded in two approximation steps

portable C code

integer library for second step

complex, hand-written proof

duration: a Ph.D. thesis

Towards automatic implementation of libm functions - Intel Nizhny Novgorod - 30 july 2007 2



Function development by Arénaire members – 1

First function in crlibm

exp(x) by David Defour

correctly rounded in two approximation steps

portable C code

integer library for second step

complex, hand-written proof

duration: a Ph.D. thesis

Towards automatic implementation of libm functions - Intel Nizhny Novgorod - 30 july 2007 2



Function development by Arénaire members – 1

First function in crlibm

exp(x) by David Defour

correctly rounded in two approximation steps

portable C code

integer library for second step

complex, hand-written proof

duration: a Ph.D. thesis

Towards automatic implementation of libm functions - Intel Nizhny Novgorod - 30 july 2007 2



Function development by Arénaire members – 2

An alternative implementation

exp(x) by myself

correctly rounded in one approximation step

usage of Itanium specific features through assembler

complex, hand-written, wrong proof

duration: a summer intern-ship at Intel

Towards automatic implementation of libm functions - Intel Nizhny Novgorod - 30 july 2007 3



Function development by Arénaire members – 2

An alternative implementation

exp(x) by myself

correctly rounded in one approximation step

usage of Itanium specific features through assembler

complex, hand-written, wrong proof

duration: a summer intern-ship at Intel

Towards automatic implementation of libm functions - Intel Nizhny Novgorod - 30 july 2007 3



Function development by Arénaire members – 2

An alternative implementation

exp(x) by myself

correctly rounded in one approximation step

usage of Itanium specific features through assembler

complex, hand-written, wrong proof

duration: a summer intern-ship at Intel

Towards automatic implementation of libm functions - Intel Nizhny Novgorod - 30 july 2007 3



Function development by Arénaire members – 2

An alternative implementation

exp(x) by myself

correctly rounded in one approximation step

usage of Itanium specific features through assembler

complex, hand-written, wrong proof

duration: a summer intern-ship at Intel

Towards automatic implementation of libm functions - Intel Nizhny Novgorod - 30 july 2007 3



Function development by Arénaire members – 2

An alternative implementation

exp(x) by myself

correctly rounded in one approximation step

usage of Itanium specific features through assembler

complex, hand-written, wrong proof

duration: a summer intern-ship at Intel

Towards automatic implementation of libm functions - Intel Nizhny Novgorod - 30 july 2007 3



Function development by Arénaire members – 2

An alternative implementation

exp(x) by myself

correctly rounded in one approximation step

usage of Itanium specific features through assembler

complex, hand-written, wrong proof

duration: a summer intern-ship at Intel

Towards automatic implementation of libm functions - Intel Nizhny Novgorod - 30 july 2007 3



Function development by Arénaire members – 3

Further functions in crlibm: atan(x), log(x)...

Maple scripts generating header files

Computation of infinite norms in Maple

Hand-written Gappa proofs

duration: about 1 month per function

Towards automatic implementation of libm functions - Intel Nizhny Novgorod - 30 july 2007 4



Function development by Arénaire members – 3

Further functions in crlibm: atan(x), log(x)...

Maple scripts generating header files

Computation of infinite norms in Maple

Hand-written Gappa proofs

duration: about 1 month per function

Towards automatic implementation of libm functions - Intel Nizhny Novgorod - 30 july 2007 4



Function development by Arénaire members – 3

Further functions in crlibm: atan(x), log(x)...

Maple scripts generating header files

Computation of infinite norms in Maple

Hand-written Gappa proofs

duration: about 1 month per function

Towards automatic implementation of libm functions - Intel Nizhny Novgorod - 30 july 2007 4



Function development by Arénaire members – 3

Further functions in crlibm: atan(x), log(x)...

Maple scripts generating header files

Computation of infinite norms in Maple

Hand-written Gappa proofs

duration: about 1 month per function

Towards automatic implementation of libm functions - Intel Nizhny Novgorod - 30 july 2007 4



Function development by Arénaire members – 3

Further functions in crlibm: atan(x), log(x)...

Maple scripts generating header files

Computation of infinite norms in Maple

Hand-written Gappa proofs

duration: about 1 month per function

Towards automatic implementation of libm functions - Intel Nizhny Novgorod - 30 july 2007 4



Function development at Intel

And at Intel?

How many man-hours are accounted per libm function?

Towards automatic implementation of libm functions - Intel Nizhny Novgorod - 30 july 2007 5



What is the issue?

Why is the Arénaire development process so slow?

Actually, I thought we were always doing the same things...

Towards automatic implementation of libm functions - Intel Nizhny Novgorod - 30 july 2007 6



What is the issue?

Why is the Arénaire development process so slow?

Actually, I thought we were always doing the same things...

Towards automatic implementation of libm functions - Intel Nizhny Novgorod - 30 july 2007 6



Automatization of the
implementation process

History of libm function development

Automatization of the implementation process

Let’s try it out...

Conclusions

Towards automatic implementation of libm functions - Intel Nizhny Novgorod - 30 july 2007 7



Steps in the implementation of a function

Task: implement f in a domain [a, b] with an accuracy of k bits

Analyze the behaviour of f in [a, b]

Find an appropriate range reduction

Compute an approximation polynomial p∗

Bring the coefficients of p∗ into floating-point form: p

Implement p in floating-point arithmetic

Bound round-off errors, write a proof

Check the proof for mistakes

Bound and proof the approximation error: ‖p−f
f ‖∞

Integrate everything

Towards automatic implementation of libm functions - Intel Nizhny Novgorod - 30 july 2007 8



Steps in the implementation of a function

Task: implement f in a domain [a, b] with an accuracy of k bits

Analyze the behaviour of f in [a, b]

Find an appropriate range reduction

Compute an approximation polynomial p∗

Bring the coefficients of p∗ into floating-point form: p

Implement p in floating-point arithmetic

Bound round-off errors, write a proof

Check the proof for mistakes

Bound and proof the approximation error: ‖p−f
f ‖∞

Integrate everything

Towards automatic implementation of libm functions - Intel Nizhny Novgorod - 30 july 2007 8



Steps in the implementation of a function

Task: implement f in a domain [a, b] with an accuracy of k bits

Analyze the behaviour of f in [a, b]

Find an appropriate range reduction

Compute an approximation polynomial p∗

Bring the coefficients of p∗ into floating-point form: p

Implement p in floating-point arithmetic

Bound round-off errors, write a proof

Check the proof for mistakes

Bound and proof the approximation error: ‖p−f
f ‖∞

Integrate everything

Towards automatic implementation of libm functions - Intel Nizhny Novgorod - 30 july 2007 8



Steps in the implementation of a function

Task: implement f in a domain [a, b] with an accuracy of k bits

Analyze the behaviour of f in [a, b]

Find an appropriate range reduction

Compute an approximation polynomial p∗

Bring the coefficients of p∗ into floating-point form: p

Implement p in floating-point arithmetic

Bound round-off errors, write a proof

Check the proof for mistakes

Bound and proof the approximation error: ‖p−f
f ‖∞

Integrate everything

Towards automatic implementation of libm functions - Intel Nizhny Novgorod - 30 july 2007 8



Steps in the implementation of a function

Task: implement f in a domain [a, b] with an accuracy of k bits

Analyze the behaviour of f in [a, b]

Find an appropriate range reduction

Compute an approximation polynomial p∗

Bring the coefficients of p∗ into floating-point form: p

Implement p in floating-point arithmetic

Bound round-off errors, write a proof

Check the proof for mistakes

Bound and proof the approximation error: ‖p−f
f ‖∞

Integrate everything

Towards automatic implementation of libm functions - Intel Nizhny Novgorod - 30 july 2007 8



Steps in the implementation of a function

Task: implement f in a domain [a, b] with an accuracy of k bits

Analyze the behaviour of f in [a, b]

Find an appropriate range reduction

Compute an approximation polynomial p∗

Bring the coefficients of p∗ into floating-point form: p

Implement p in floating-point arithmetic

Bound round-off errors, write a proof

Check the proof for mistakes

Bound and proof the approximation error: ‖p−f
f ‖∞

Integrate everything

Towards automatic implementation of libm functions - Intel Nizhny Novgorod - 30 july 2007 8



Steps in the implementation of a function

Task: implement f in a domain [a, b] with an accuracy of k bits

Analyze the behaviour of f in [a, b]

Find an appropriate range reduction

Compute an approximation polynomial p∗

Bring the coefficients of p∗ into floating-point form: p

Implement p in floating-point arithmetic

Bound round-off errors, write a proof

Check the proof for mistakes

Bound and proof the approximation error: ‖p−f
f ‖∞

Integrate everything

Towards automatic implementation of libm functions - Intel Nizhny Novgorod - 30 july 2007 8



Steps in the implementation of a function

Task: implement f in a domain [a, b] with an accuracy of k bits

Analyze the behaviour of f in [a, b]

Find an appropriate range reduction

Compute an approximation polynomial p∗

Bring the coefficients of p∗ into floating-point form: p

Implement p in floating-point arithmetic

Bound round-off errors, write a proof

Check the proof for mistakes

Bound and proof the approximation error: ‖p−f
f ‖∞

Integrate everything

Towards automatic implementation of libm functions - Intel Nizhny Novgorod - 30 july 2007 8



Steps in the implementation of a function

Task: implement f in a domain [a, b] with an accuracy of k bits

Analyze the behaviour of f in [a, b]

Find an appropriate range reduction

Compute an approximation polynomial p∗

Bring the coefficients of p∗ into floating-point form: p

Implement p in floating-point arithmetic

Bound round-off errors, write a proof

Check the proof for mistakes

Bound and proof the approximation error: ‖p−f
f ‖∞

Integrate everything

Towards automatic implementation of libm functions - Intel Nizhny Novgorod - 30 july 2007 8



Steps in the implementation of a function

Task: implement f in a domain [a, b] with an accuracy of k bits

Analyze the behaviour of f in [a, b]

Find an appropriate range reduction

Compute an approximation polynomial p∗

Bring the coefficients of p∗ into floating-point form: p

Implement p in floating-point arithmetic

Bound round-off errors, write a proof

Check the proof for mistakes

Bound and proof the approximation error: ‖p−f
f ‖∞

Integrate everything

Towards automatic implementation of libm functions - Intel Nizhny Novgorod - 30 july 2007 8



A prototype toolchain – 1

A prototype, automatic toolchain for the implementation process

Joint work by
S. Chevillard (floating-point Remez part)
Ch. Lauter (implementation and proof part)
G. Melquiond (Gappa)
and other Arénaire members

Written in
Pari/GP
C, C++
Shell scripts
an internal language: arenaireplot

Targetted to
portable C implementations
using double, double-double and triple-double arithmetic
with easy-to-handle Horner evaluation

Towards automatic implementation of libm functions - Intel Nizhny Novgorod - 30 july 2007 9



A prototype toolchain – 1

A prototype, automatic toolchain for the implementation process

Joint work by
S. Chevillard (floating-point Remez part)
Ch. Lauter (implementation and proof part)
G. Melquiond (Gappa)
and other Arénaire members

Written in
Pari/GP
C, C++
Shell scripts
an internal language: arenaireplot

Targetted to
portable C implementations
using double, double-double and triple-double arithmetic
with easy-to-handle Horner evaluation

Towards automatic implementation of libm functions - Intel Nizhny Novgorod - 30 july 2007 9



A prototype toolchain – 1

A prototype, automatic toolchain for the implementation process

Joint work by
S. Chevillard (floating-point Remez part)
Ch. Lauter (implementation and proof part)
G. Melquiond (Gappa)
and other Arénaire members

Written in
Pari/GP
C, C++
Shell scripts
an internal language: arenaireplot

Targetted to
portable C implementations
using double, double-double and triple-double arithmetic
with easy-to-handle Horner evaluation

Towards automatic implementation of libm functions - Intel Nizhny Novgorod - 30 july 2007 9



A prototype toolchain – 1

A prototype, automatic toolchain for the implementation process

Joint work by
S. Chevillard (floating-point Remez part)
Ch. Lauter (implementation and proof part)
G. Melquiond (Gappa)
and other Arénaire members

Written in
Pari/GP
C, C++
Shell scripts
an internal language: arenaireplot

Targetted to
portable C implementations
using double, double-double and triple-double arithmetic
with easy-to-handle Horner evaluation

Towards automatic implementation of libm functions - Intel Nizhny Novgorod - 30 july 2007 9



A prototype toolchain – 2

Automatic handling of the following sub-problems:

Find an appropriate range reduction (trivial cases)

Compute an approximation polynomial p∗

Bring the coefficients of p∗ into floating-point form: p

Implement p in floating-point arithmetic

Bound round-off errors, write a proof

Check the proof for errors

Bound and proof the approximation error: ‖p−f
f ‖∞

Missing parts:

Analyze the behaviour of f in [a, b]

Find a range reduction using tables etc.

Integrate everything

Towards automatic implementation of libm functions - Intel Nizhny Novgorod - 30 july 2007 10



A prototype toolchain – 2

Automatic handling of the following sub-problems:

Find an appropriate range reduction (trivial cases)

Compute an approximation polynomial p∗

Bring the coefficients of p∗ into floating-point form: p

Implement p in floating-point arithmetic

Bound round-off errors, write a proof

Check the proof for errors

Bound and proof the approximation error: ‖p−f
f ‖∞

Missing parts:

Analyze the behaviour of f in [a, b]

Find a range reduction using tables etc.

Integrate everything

Towards automatic implementation of libm functions - Intel Nizhny Novgorod - 30 july 2007 10



A prototype toolchain – 2

Automatic handling of the following sub-problems:

Find an appropriate range reduction (trivial cases)

Compute an approximation polynomial p∗

Bring the coefficients of p∗ into floating-point form: p

Implement p in floating-point arithmetic

Bound round-off errors, write a proof

Check the proof for errors

Bound and proof the approximation error: ‖p−f
f ‖∞

Missing parts:

Analyze the behaviour of f in [a, b]

Find a range reduction using tables etc.

Integrate everything

Towards automatic implementation of libm functions - Intel Nizhny Novgorod - 30 july 2007 10



A prototype toolchain – 2

Automatic handling of the following sub-problems:

Find an appropriate range reduction (trivial cases)

Compute an approximation polynomial p∗

Bring the coefficients of p∗ into floating-point form: p

Implement p in floating-point arithmetic

Bound round-off errors, write a proof

Check the proof for errors

Bound and proof the approximation error: ‖p−f
f ‖∞

Missing parts:

Analyze the behaviour of f in [a, b]

Find a range reduction using tables etc.

Integrate everything

Towards automatic implementation of libm functions - Intel Nizhny Novgorod - 30 july 2007 10



A prototype toolchain – 2

Automatic handling of the following sub-problems:

Find an appropriate range reduction (trivial cases)

Compute an approximation polynomial p∗

Bring the coefficients of p∗ into floating-point form: p

Implement p in floating-point arithmetic

Bound round-off errors, write a proof

Check the proof for errors

Bound and proof the approximation error: ‖p−f
f ‖∞

Missing parts:

Analyze the behaviour of f in [a, b]

Find a range reduction using tables etc.

Integrate everything

Towards automatic implementation of libm functions - Intel Nizhny Novgorod - 30 july 2007 10



A prototype toolchain – 2

Automatic handling of the following sub-problems:

Find an appropriate range reduction (trivial cases)

Compute an approximation polynomial p∗

Bring the coefficients of p∗ into floating-point form: p

Implement p in floating-point arithmetic

Bound round-off errors, write a proof

Check the proof for errors

Bound and proof the approximation error: ‖p−f
f ‖∞

Missing parts:

Analyze the behaviour of f in [a, b]

Find a range reduction using tables etc.

Integrate everything

Towards automatic implementation of libm functions - Intel Nizhny Novgorod - 30 july 2007 10



A prototype toolchain – 2

Automatic handling of the following sub-problems:

Find an appropriate range reduction (trivial cases)

Compute an approximation polynomial p∗

Bring the coefficients of p∗ into floating-point form: p

Implement p in floating-point arithmetic

Bound round-off errors, write a proof

Check the proof for errors

Bound and proof the approximation error: ‖p−f
f ‖∞

Missing parts:

Analyze the behaviour of f in [a, b]

Find a range reduction using tables etc.

Integrate everything

Towards automatic implementation of libm functions - Intel Nizhny Novgorod - 30 july 2007 10



A prototype toolchain – 2

Automatic handling of the following sub-problems:

Find an appropriate range reduction (trivial cases)

Compute an approximation polynomial p∗

Bring the coefficients of p∗ into floating-point form: p

Implement p in floating-point arithmetic

Bound round-off errors, write a proof

Check the proof for errors

Bound and proof the approximation error: ‖p−f
f ‖∞

Missing parts:

Analyze the behaviour of f in [a, b]

Find a range reduction using tables etc.

Integrate everything

Towards automatic implementation of libm functions - Intel Nizhny Novgorod - 30 july 2007 10



A prototype toolchain – 2

Automatic handling of the following sub-problems:

Find an appropriate range reduction (trivial cases)

Compute an approximation polynomial p∗

Bring the coefficients of p∗ into floating-point form: p

Implement p in floating-point arithmetic

Bound round-off errors, write a proof

Check the proof for errors

Bound and proof the approximation error: ‖p−f
f ‖∞

Missing parts:

Analyze the behaviour of f in [a, b]

Find a range reduction using tables etc.

Integrate everything

Towards automatic implementation of libm functions - Intel Nizhny Novgorod - 30 july 2007 10



A prototype toolchain – 2

Automatic handling of the following sub-problems:

Find an appropriate range reduction (trivial cases)

Compute an approximation polynomial p∗

Bring the coefficients of p∗ into floating-point form: p

Implement p in floating-point arithmetic

Bound round-off errors, write a proof

Check the proof for errors

Bound and proof the approximation error: ‖p−f
f ‖∞

Missing parts:

Analyze the behaviour of f in [a, b]

Find a range reduction using tables etc.

Integrate everything

Towards automatic implementation of libm functions - Intel Nizhny Novgorod - 30 july 2007 10



A prototype toolchain – 2

Automatic handling of the following sub-problems:

Find an appropriate range reduction (trivial cases)

Compute an approximation polynomial p∗

Bring the coefficients of p∗ into floating-point form: p

Implement p in floating-point arithmetic

Bound round-off errors, write a proof

Check the proof for errors

Bound and proof the approximation error: ‖p−f
f ‖∞

Missing parts:

Analyze the behaviour of f in [a, b]

Find a range reduction using tables etc.

Integrate everything

Towards automatic implementation of libm functions - Intel Nizhny Novgorod - 30 july 2007 10



Let’s try it out...

History of libm function development

Automatization of the implementation process

Let’s try it out...

Conclusions

Towards automatic implementation of libm functions - Intel Nizhny Novgorod - 30 july 2007 11



Demonstration

Task: Implement
f (x) = ecos x2+1

in the interval
I = [−2−5; 2−5]

with at least 62 bits of accuracy

Let’ try it out...

Towards automatic implementation of libm functions - Intel Nizhny Novgorod - 30 july 2007 12



Demonstration

Task: Implement
f (x) = ecos x2+1

in the interval
I = [−2−5; 2−5]

with at least 62 bits of accuracy

Let’ try it out...

Towards automatic implementation of libm functions - Intel Nizhny Novgorod - 30 july 2007 12



Conclusions

History of libm function development

Automatization of the implementation process

Let’s try it out...

Conclusions

Towards automatic implementation of libm functions - Intel Nizhny Novgorod - 30 july 2007 13



Results on new functions

Last functions in crlibm

sinpi(x), cospi(x), tanpi(x)

correctly rounded in two approximation steps

both evaluation codes generated automatically

duration: two days

Towards automatic implementation of libm functions - Intel Nizhny Novgorod - 30 july 2007 14



Results on new functions

Last functions in crlibm

sinpi(x), cospi(x), tanpi(x)

correctly rounded in two approximation steps

both evaluation codes generated automatically

duration: two days

Towards automatic implementation of libm functions - Intel Nizhny Novgorod - 30 july 2007 14



Results on new functions

Last functions in crlibm

sinpi(x), cospi(x), tanpi(x)

correctly rounded in two approximation steps

both evaluation codes generated automatically

duration: two days

Towards automatic implementation of libm functions - Intel Nizhny Novgorod - 30 july 2007 14



Results on new functions

Last functions in crlibm

sinpi(x), cospi(x), tanpi(x)

correctly rounded in two approximation steps

both evaluation codes generated automatically

duration: two days

Towards automatic implementation of libm functions - Intel Nizhny Novgorod - 30 july 2007 14



Results on new functions

Last functions in crlibm

sinpi(x), cospi(x), tanpi(x)

correctly rounded in two approximation steps

both evaluation codes generated automatically

duration: two days

Towards automatic implementation of libm functions - Intel Nizhny Novgorod - 30 july 2007 14



And Intel’s customers ?

Could this be interesting for Intel’s customers?

Faster-to-market and cheaper implementations ?

Easier approach to Gappa usage ?

Better maintainablity of some code parts ?

Compilers that inline composite functions like ecos x2+1 ?

Towards automatic implementation of libm functions - Intel Nizhny Novgorod - 30 july 2007 15



And Intel’s customers ?

Could this be interesting for Intel’s customers?

Faster-to-market and cheaper implementations ?

Easier approach to Gappa usage ?

Better maintainablity of some code parts ?

Compilers that inline composite functions like ecos x2+1 ?

Towards automatic implementation of libm functions - Intel Nizhny Novgorod - 30 july 2007 15



And Intel’s customers ?

Could this be interesting for Intel’s customers?

Faster-to-market and cheaper implementations ?

Easier approach to Gappa usage ?

Better maintainablity of some code parts ?

Compilers that inline composite functions like ecos x2+1 ?

Towards automatic implementation of libm functions - Intel Nizhny Novgorod - 30 july 2007 15



And Intel’s customers ?

Could this be interesting for Intel’s customers?

Faster-to-market and cheaper implementations ?

Easier approach to Gappa usage ?

Better maintainablity of some code parts ?

Compilers that inline composite functions like ecos x2+1 ?

Towards automatic implementation of libm functions - Intel Nizhny Novgorod - 30 july 2007 15



Thank you!

Thank you for your attention !

Questions ?

Towards automatic implementation of libm functions - Intel Nizhny Novgorod - 30 july 2007 16


	History of libm function development
	Automatization of the implementation process
	Let's try it out...
	Conclusions

