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Function development by Arénaire members – 1

First function in crlibm

exp(x) by David Defour

correctly rounded in two approximation steps

portable C code

integer library for second step

complex, hand-written proof

duration: a Ph.D. thesis
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Function development by Arénaire members – 2

An alternative implementation

exp(x) by myself

correctly rounded in one approximation step

usage of Itanium specific features through assembler

complex, hand-written, wrong proof

duration: a summer intern-ship at Intel
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Function development by Arénaire members – 3

Further functions in crlibm: atan(x), log(x)...

Maple scripts generating header files

Computation of infinite norms in Maple

Hand-written Gappa proofs

duration: about 1 month per function
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Function development at Intel

And at Intel?

How many man-hours are accounted per libm function?
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What is the issue?

Why is the Arénaire development process so slow?

Actually, I thought we were always doing the same things...
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Automatization of the
implementation process
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Steps in the implementation of a function

Task: implement f in a domain [a, b] with an accuracy of k bits

Analyze the behaviour of f in [a, b]

Find an appropriate range reduction

Compute an approximation polynomial p∗

Bring the coefficients of p∗ into floating-point form: p

Implement p in floating-point arithmetic

Bound round-off errors, write a proof

Check the proof for mistakes

Bound and proof the approximation error: ‖p−f
f ‖∞

Integrate everything
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A prototype toolchain – 1

A prototype, automatic toolchain for the implementation process

Joint work by
S. Chevillard (floating-point Remez part)
Ch. Lauter (implementation and proof part)
G. Melquiond (Gappa)
and other Arénaire members

Written in
Pari/GP
C, C++
Shell scripts
an internal language: arenaireplot

Targetted to
portable C implementations
using double, double-double and triple-double arithmetic
with easy-to-handle Horner evaluation

Towards automatic implementation of libm functions - Intel Nizhny Novgorod - 30 july 2007 9



A prototype toolchain – 1

A prototype, automatic toolchain for the implementation process

Joint work by
S. Chevillard (floating-point Remez part)
Ch. Lauter (implementation and proof part)
G. Melquiond (Gappa)
and other Arénaire members
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A prototype toolchain – 2

Automatic handling of the following sub-problems:

Find an appropriate range reduction (trivial cases)

Compute an approximation polynomial p∗

Bring the coefficients of p∗ into floating-point form: p

Implement p in floating-point arithmetic

Bound round-off errors, write a proof

Check the proof for errors

Bound and proof the approximation error: ‖p−f
f ‖∞

Missing parts:

Analyze the behaviour of f in [a, b]

Find a range reduction using tables etc.

Integrate everything
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Demonstration

Task: Implement
f (x) = ecos x2+1

in the interval
I = [−2−5; 2−5]

with at least 62 bits of accuracy

Let’ try it out...
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Results on new functions

Last functions in crlibm

sinpi(x), cospi(x), tanpi(x)

correctly rounded in two approximation steps

both evaluation codes generated automatically

duration: two days
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And Intel’s customers ?

Could this be interesting for Intel’s customers?

Faster-to-market and cheaper implementations ?

Easier approach to Gappa usage ?

Better maintainablity of some code parts ?

Compilers that inline composite functions like ecos x2+1 ?
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Thank you!

Thank you for your attention !

Questions ?
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