Advancements in (cr)libm development

Presentation at Intel - Portland

Christoph Quirin Lauter

Arénaire team
Laboratoire de I'Informatique et du Parallélisme
Ecole Normale Supérieure de Lyon

Portland, 10 october 2007

- ol Phs I INRIA ‘i

Introduction

Introduction

Advancements in elementary function development - Intel Portland - 10 october 2007

crlibm!: correctly rounded elementary function library

1http ://lipforge.ens-1lyon.fr/www/crlibm/

Advancements in elementary function development - Intel Portland - 10 october 2007

http://lipforge.ens-lyon.fr/www/crlibm/

crlibm!: correctly rounded elementary function library

@ Elementary functions as in an usual 1ibm:
exp
sin
(oo}

1http ://lipforge.ens-1lyon.fr/www/crlibm/

Advancements in elementary function development - Intel Portland - 10 october 2007

http://lipforge.ens-lyon.fr/www/crlibm/

crlibm!: correctly rounded elementary function library

@ Elementary functions as in an usual 1ibm:
exp
sin
Ccos

@ Bit-exact, correctly rounded results £ (x)= o(f(x))

1
http://lipforge.ens-1lyon.fr/www/crlibm/

Advancements in elementary function development - Intel Portland - 10 october 2007

http://lipforge.ens-lyon.fr/www/crlibm/

crlibm!: correctly rounded elementary function library

@ Elementary functions as in an usual 1ibm:
exp
sin
Ccos

@ Bit-exact, correctly rounded results £ (x)= o(f(x))

@ No important impact on average performance

1
http://lipforge.ens-1lyon.fr/www/crlibm/

Advancements in elementary function development - Intel Portland - 10 october 2007

http://lipforge.ens-lyon.fr/www/crlibm/

crlibm!: correctly rounded elementary function library

Elementary functions as in an usual 1ibm:
exp
sin
Ccos

Bit-exact, correctly rounded results £ (x) = o(f(x))

No important impact on average performance

Guaranteed worst case performance

1
http://lipforge.ens-1lyon.fr/www/crlibm/

Advancements in elementary function development - Intel Portland - 10 october 2007

http://lipforge.ens-lyon.fr/www/crlibm/

crlibm!: correctly rounded elementary function library

@ Elementary functions as in an usual 1ibm:

o exp
e sin
o cos
o ...

Bit-exact, correctly rounded results £ (x) = o(f(x))
No important impact on average performance

Guaranteed worst case performance

Challenge: Correct rounding requires high accuracy and
complete proofs

1
http://lipforge.ens-1lyon.fr/www/crlibm/

Advancements in elementary function development - Intel Portland - 10 october 2007

http://lipforge.ens-lyon.fr/www/crlibm/

@ Advancements in the correct rounding of x¥

@ Techniques for automatic implementation of 1ibm functions.

Advancements in elementary function development - Intel Portland - 10 october 2007

Correct rounding of x”

Correct rounding of x¥

Advancements in elementary function development - Intel Portland - 10 october 2007

o Correct rounding must overcome the Table Maker's Dilemma

o(f(x) - (1 +¢)) = o(f(x))

Advancements in elementary function development - Intel Portland - 10 october 2007

o Correct rounding must overcome the Table Maker's Dilemma

o(f(x) - (1 +¢)) = o(f(x))

@ Finite domain, x is FP number, x € [F: worst-case Z exists

J2 > 0.Ve,le| <E.Vx €F.o(f(x)-(14¢)) = f(x)

Advancements in elementary function development - Intel Portland - 10 october 2007

o Correct rounding must overcome the Table Maker's Dilemma

?

o(f(x) - (1 +¢€)) = o(f(x))

@ Finite domain, x is FP number, x € [F: worst-case Z exists

J2 > 0.Ve,le| <E.Vx €F.o(f(x)-(14¢)) = f(x)

@ Univariate functions implemented in double precision:
o Computation of Z actually possible (Lefevre, Stehlé et al.)

Advancements in elementary function development - Intel Portland - 10 october 2007

o Correct rounding must overcome the Table Maker's Dilemma

?

o(f(x) - (1 +¢€)) = o(f(x))

@ Finite domain, x is FP number, x € [F: worst-case Z exists

J2 > 0.Ve,le| <E.Vx €F.o(f(x)-(14¢)) = f(x)

@ Univariate functions implemented in double precision:

o Computation of Z actually possible (Lefevre, Stehlé et al.)
o Computation of Z is a smart exhaustive search

Advancements in elementary function development - Intel Portland - 10 october 2007

o Correct rounding must overcome the Table Maker's Dilemma

?
o(f(x) - (L+¢)) = o(f(x))
@ Finite domain, x is FP number, x € [F: worst-case Z exists

J2 > 0.Ve,le| <E.Vx €F.o(f(x)-(14¢)) = f(x)

@ Univariate functions implemented in double precision:

o Computation of Z actually possible (Lefevre, Stehlé et al.)
o Computation of Z is a smart exhaustive search

@ Bivariate function x” : F2 — F

Advancements in elementary function development - Intel Portland - 10 october 2007

o Correct rounding must overcome the Table Maker's Dilemma

?

o(f(x) - (1 +¢€)) = o(f(x))

@ Finite domain, x is FP number, x € [F: worst-case Z exists

J2 > 0.Ve,le| <E.Vx €F.o(f(x)-(14¢)) = f(x)

@ Univariate functions implemented in double precision:

o Computation of Z actually possible (Lefevre, Stehlé et al.)
o Computation of Z is a smart exhaustive search

o Bivariate function x¥ : F2 > T
o roughly 212 valid inputs

Advancements in elementary function development - Intel Portland - 10 october 2007

o Correct rounding must overcome the Table Maker's Dilemma

?

o(f(x) - (1 +¢€)) = o(f(x))

@ Finite domain, x is FP number, x € [F: worst-case Z exists

J2 > 0.Ve,le| <E.Vx €F.o(f(x)-(14¢)) = f(x)

@ Univariate functions implemented in double precision:
o Computation of Z actually possible (Lefevre, Stehlé et al.)
o Computation of £ is a smart exhaustive search

e Bivariate function x¥ : F? — I

o roughly 212 valid inputs

o Worst-case search of € currently untractable

Advancements in elementary function development - Intel Portland - 10 october 2007

@ Consider x", x € F, n€ N, n small

o Lefevre: traditional worst-case search is possible

o Consider each n separately

o Current range achieved: n < 255

o Worst case € = 27117 comparable to other double precision
functions

o Correctly rounded power (x,n)=o(x")

Advancements in elementary function development - Intel Portland - 10 october 2007

@ Consider x", x € F, n € N, n small
o Lefevre: traditional worst-case search is possible
o Consider each n separately
o Current range achieved: n < 255
o Worst case € = 27117 comparable to other double precision
functions

o Correctly rounded power (x,n)=o(x")
o Guaranteed worst-case performance for small n

Advancements in elementary function development - Intel Portland - 10 october 2007

@ Consider x", x € F, n € N, n small
o Lefevre: traditional worst-case search is possible
o Consider each n separately
o Current range achieved: n < 255
o Worst case € = 27117 comparable to other double precision
functions

o Correctly rounded power (x,n)=o(x")

o Guaranteed worst-case performance for small n
o Situation comparable to sin and cos:

Advancements in elementary function development - Intel Portland - 10 october 2007

@ Consider x", x € F, n € N, n small
o Lefevre: traditional worst-case search is possible
o Consider each n separately
o Current range achieved: n < 255
o Worst case € = 27117 comparable to other double precision
functions

e Correctly rounded power (x,n)=o(x")
o Guaranteed worst-case performance for small n
o Situation comparable to sin and cos:

> small values of n (resp. x for sin) are the most interesting
> Ziv's rounding technique allows for correct rounding outside
the known domain

Advancements in elementary function development - Intel Portland - 10 october 2007

@ Consider x", x € F, n € N, n small
o Lefevre: traditional worst-case search is possible
o Consider each n separately
o Current range achieved: n < 255
o Worst case € = 27117 comparable to other double precision
functions

o Correctly rounded power (x,n)=o(x")

o Guaranteed worst-case performance for small n
o Situation comparable to sin and cos:

> small values of n (resp. x for sin) are the most interesting
> Ziv's rounding technique allows for correct rounding outside
the known domain

@ This research paves the road for x”

Advancements in elementary function development - Intel Portland - 10 october 2007

@ Ziv's rounding technique:
Decrease error ¢ of approximation x¥ - (1 +) until rounding
becomes possible

o(x” - (1 +¢)) = o(x)

Advancements in elementary function development - Intel Portland - 10 october 2007

@ Ziv's rounding technique:
Decrease error ¢ of approximation x¥ - (1 +) until rounding
becomes possible

o(x” - (1 +¢)) = o(x)

@ Issue:

For ensuring termination, rounding boundary cases must be
filtered out

Rounding boundary Exact value x¥

I ‘

|
——
| P~

Approximation Interval Z

Advancements in elementary function development - Intel Portland - 10 october 2007

@ Ziv's rounding technique:
Decrease error ¢ of approximation x¥ - (1 +) until rounding
becomes possible

o(x” - (1 +¢)) = o(x)

@ Issue:
For ensuring termination, rounding boundary cases must be
filtered out

Rounding boundary Exact value x¥

I ‘

|
——
| P~

Approximation Interval Z

@ Rounding boundary cases:
Complex set for x¥:

RB = {x’ = z|x,y € Fs3,z € Fs4}

Advancements in elementary function development - Intel Portland - 10 october 2007

Previous approaches:

@ Rewrite
RB = {x¥ = z|x,y € Fs3,z € Fs4}

as
x=2F.m, y:2F-n, z=2%k

E-2F.n=G, (m")* "=k

Advancements in elementary function development - Intel Portland - 10 october 2007

Previous approaches:

@ Rewrite
RB = {x¥ = z|x,y € Fs3,z € Fs4}

as
x=2F.m, y:2F-n, z=2%k

Advancements in elementary function development - Intel Portland - 10 october 2007

Previous approaches:

@ Rewrite
RB = {x¥ = z|x,y € Fs3,z € Fs4}

as
x=2F.m, y:2F-n, z=2%k

o Cost of the test in double precision:

o up to b square root extractions
o up to 10 doubled precision multiplies
o pipeline broken by many ifs

Advancements in elementary function development - Intel Portland - 10 october 2007

Use worst-case information for rounding boundary testing

Not-rounding-boundary cases Gaps without cases

Exact case Midpoint case Exact case

| l |

|
t 7

Not-rounding-boundary cases Midpoint case

Approximation Approximation interval Z

Advancements in elementary function development - Intel Portland - 10 october 2007

@ Worst-case actually unknown for x¥ |

Advancements in elementary function development - Intel Portland - 10 october 2007

10

@ Worst-case actually unknown for x¥ |

@ All rounding boundary cases for x” in double precision lie in a
subset

S = {(xy)eFa|yeN, 2<y<35}
U {(m,an)elF§3\FeZ, —5<F<0, ne2N+1,
3<n<35 me2N+1}

Advancements in elementary function development - Intel Portland - 10 october 2007 10

@ Worst-case actually unknown for x|

@ All rounding boundary cases for x” in double precision lie in a
subset

S = {(xy)eFg|yeN, 2<y <35}
U {(m,an)elF§3\FeZ, —5<F<0, ne2N+1,
3<n<35 me2N+1}

o Worst-case search is tractable for (x,y) € S

Advancements in elementary function development - Intel Portland - 10 october 2007

10

@ Worst-case actually unknown for x|

@ All rounding boundary cases for x” in double precision lie in a
subset

S = {(xy)eFg|yeN, 2<y <35}
U {(m,an)elF§3|FeZ, —5<F<0, ne2N+1,
3<n<35 me2N+1}

o Worst-case search is tractable for (x,y) € S

o Testing if (x,y) € S is easy: straightforward comparisons

Advancements in elementary function development - Intel Portland - 10 october 2007

@ Worst-case actually unknown for x|

@ All rounding boundary cases for x” in double precision lie in a
subset

S = {(xy)eFg|yeN, 2<y <35}
U {(m,an)elF§3 |FeZ, —5<F<0, ne2N+1,
3<n<35 me2N+1}
o Worst-case search is tractable for (x,y) € S

o Testing if (x,y) € S is easy: straightforward comparisons
@ Experimental results:

Advancements in elementary function development - Intel Portland - 10 october 2007

@ Worst-case actually unknown for x|

@ All rounding boundary cases for x” in double precision lie in a
subset

S = {(xy)eFg|yeN, 2<y <35}
U {(m,an)elF§3 |FeZ, —5<F<0, ne2N+1,
3<n<35 me2N+1}
o Worst-case search is tractable for (x,y) € S
o Testing if (x,y) € S is easy: straightforward comparisons

@ Experimental results:
o 39% speed-up on average w.r.t. previous implementations

Advancements in elementary function development - Intel Portland - 10 october 2007

@ Worst-case actually unknown for x|

@ All rounding boundary cases for x” in double precision lie in a
subset

S = {(xy)eFg|yeN, 2<y <35}
U {(m,an)elF§3|FeZ, —5<F<0, ne2N+1,
3<n<35 me2N+1}

o Worst-case search is tractable for (x,y) € S
o Testing if (x,y) € S is easy: straightforward comparisons

@ Experimental results:

o 39% speed-up on average w.r.t. previous implementations
o Overhead of RB detection decreased from 50% to 9%

Advancements in elementary function development - Intel Portland - 10 october 2007

@ Worst-case actually unknown for x|

@ All rounding boundary cases for x” in double precision lie in a
subset

S = {(xy)eFg|yeN, 2<y <35}
U {(m,an)elF§3|FeZ, —5<F<0, ne2N+1,
3<n<35 me2N+1}

o Worst-case search is tractable for (x,y) € S
o Testing if (x,y) € S is easy: straightforward comparisons

@ Experimental results:

o 39% speed-up on average w.r.t. previous implementations
o Overhead of RB detection decreased from 50% to 9%
o Still more optimization: 99.1% of RB cases imply y = %

Advancements in elementary function development - Intel Portland - 10 october 2007

Details can be found at

http://prunel.ccsd.cnrs.fr/ens1-00169409/

Advancements in elementary function development - Intel Portland - 10 october 2007

11

http://prunel.ccsd.cnrs.fr/ensl-00169409/

Automatic implementation of
libm functions

Automatic implementation of 1ibm functions

Advancements in elementary function development - Intel Portland - 10 october 2007

12

First function in crlibm

Advancements in elementary function development - Intel Portland - 10 october 2007

13

First function in crlibm

@ exp(x) by David Defour

Advancements in elementary function development - Intel Portland - 10 october 2007

13

First function in crlibm

@ exp(x) by David Defour

@ correctly rounded in two approximation steps

Advancements in elementary function development - Intel Portland - 10 october 2007

13

First function in crlibm

@ exp(x) by David Defour
@ correctly rounded in two approximation steps
@ portable C code

@ integer library for second step

Advancements in elementary function development - Intel Portland - 10 october 2007

13

First function in crlibm

exp(x) by David Defour
correctly rounded in two approximation steps
portable C code

integer library for second step

complex, hand-written proof

Advancements in elementary function development - Intel Portland - 10 october 2007

13

First function in crlibm

exp(x) by David Defour

correctly rounded in two approximation steps
portable C code

integer library for second step

complex, hand-written proof

duration: a Ph.D. thesis

Advancements in elementary function development - Intel Portland - 10 october 2007

13

An alternative implementation

Advancements in elementary function development - Intel Portland - 10 october 2007

14

An alternative implementation

@ exp(x) by myself

Advancements in elementary function development - Intel Portland - 10 october 2007

14

An alternative implementation

@ exp(x) by myself

@ correctly rounded in one approximation step

Advancements in elementary function development - Intel Portland - 10 october 2007

14

An alternative implementation

@ exp(x) by myself
@ correctly rounded in one approximation step

@ usage of Itanium specific features through assembler

Advancements in elementary function development - Intel Portland - 10 october 2007

14

An alternative implementation

@ exp(x) by myself
@ correctly rounded in one approximation step
@ usage of Itanium specific features through assembler

@ complex, hand-written, wrong proof

Advancements in elementary function development - Intel Portland - 10 october 2007

14

An alternative implementation

exp(x) by myself

correctly rounded in one approximation step

°
°
@ usage of Itanium specific features through assembler
@ complex, hand-written, wrong proof

°

duration: a summer intern-ship at Intel Nizhny Novgorod

Advancements in elementary function development - Intel Portland - 10 october 2007

14

Further functions in crlibm: atan(x), log(x)...

Advancements in elementary function development - Intel Portland - 10 october 2007

15

Further functions in crlibm: atan(x), log(x)...

o Maple scripts generating header files

Advancements in elementary function development - Intel Portland - 10 october 2007

15

Further functions in crlibm: atan(x), log(x)...

o Maple scripts generating header files

@ Computation of infinite norms in Maple

Advancements in elementary function development - Intel Portland - 10 october 2007

15

Further functions in crlibm: atan(x), log(x)...

o Maple scripts generating header files
@ Computation of infinite norms in Maple
@ Hand-written Gappa proofs

Advancements in elementary function development - Intel Portland - 10 october 2007

15

Further functions in crlibm: atan(x), log(x)...

Maple scripts generating header files
Computation of infinite norms in Maple

[*]
(]
@ Hand-written Gappa proofs
°

duration: about 1 month per function

Advancements in elementary function development - Intel Portland - 10 october 2007

15

And at Intel?

How many man-hours are accounted per libm function?

Advancements in elementary function development - Intel Portland - 10 october 2007

16

Why is the Arénaire development process so slow?

Advancements in elementary function development - Intel Portland - 10 october 2007

17

Why is the Arénaire development process so slow?

Actually, | thought we were always doing the same things...

Advancements in elementary function development - Intel Portland - 10 october 2007

17

Task: implement f in a domain [a, b] with an accuracy of k bits

Advancements in elementary function development - Intel Portland - 10 october 2007

18

Task: implement f in a domain [a, b] with an accuracy of k bits

@ Analyze the behaviour of f in [a, b]

Advancements in elementary function development - Intel Portland - 10 october 2007

18

Task: implement f in a domain [a, b] with an accuracy of k bits

@ Analyze the behaviour of f in [a, b]

@ Find an appropriate range reduction

Advancements in elementary function development - Intel Portland - 10 october 2007

18

Task: implement f in a domain [a, b] with an accuracy of k bits
@ Analyze the behaviour of f in [a, b]

@ Find an appropriate range reduction

o Compute an approximation polynomial p*

Advancements in elementary function development - Intel Portland - 10 october 2007

18

Task: implement f in a domain [a, b] with an accuracy of k bits

@ Analyze the behaviour of f in [a, b]

@ Find an appropriate range reduction

o Compute an approximation polynomial p*

@ Bring the coefficients of p* into floating-point form: p

Advancements in elementary function development - Intel Portland - 10 october 2007

18

Task: implement f in a domain [a, b] with an accuracy of k bits

Analyze the behaviour of f in [a, b]

Find an appropriate range reduction

Compute an approximation polynomial p*

Bring the coefficients of p* into floating-point form: p

Implement p in floating-point arithmetic

Advancements in elementary function development - Intel Portland - 10 october 2007

18

Task: implement f in a domain [a, b] with an accuracy of k bits

Analyze the behaviour of f in [a, b]

Find an appropriate range reduction

Compute an approximation polynomial p*

Bring the coefficients of p* into floating-point form: p

Implement p in floating-point arithmetic

Bound round-off errors, write a proof

Advancements in elementary function development - Intel Portland - 10 october 2007

18

Task: implement f in a domain [a, b] with an accuracy of k bits

Analyze the behaviour of f in [a, b]

Find an appropriate range reduction

Compute an approximation polynomial p*

Bring the coefficients of p* into floating-point form: p
Implement p in floating-point arithmetic

Bound round-off errors, write a proof

Check the proof for mistakes

Advancements in elementary function development - Intel Portland - 10 october 2007

18

Task: implement f in a domain [a, b] with an accuracy of k bits

Analyze the behaviour of f in [a, b]

Find an appropriate range reduction

Compute an approximation polynomial p*

Bring the coefficients of p* into floating-point form: p
Implement p in floating-point arithmetic

Bound round-off errors, write a proof

Check the proof for mistakes

Bound and proof the approximation error: ||”;ff||OO

Advancements in elementary function development - Intel Portland - 10 october 2007

18

Task: implement f in a domain [a, b] with an accuracy of k bits

Analyze the behaviour of f in [a, b]

Find an appropriate range reduction

Compute an approximation polynomial p*

Bring the coefficients of p* into floating-point form: p
Implement p in floating-point arithmetic

Bound round-off errors, write a proof

Check the proof for mistakes

Bound and proof the approximation error: ||”;ff||OO

Integrate everything

Advancements in elementary function development - Intel Portland - 10 october 2007

18

A prototype, automatic toolchain for the implementation process

Advancements in elementary function development - Intel Portland - 10 october 2007

19

A prototype, automatic toolchain for the implementation process

@ Joint work by

o S. Chevillard (floating-point polynomial approximation part)
o Ch. Lauter (implementation and proof part)

o G. Melquiond (Gappa)

o and other Arénaire members

Advancements in elementary function development - Intel Portland - 10 october 2007 19

A prototype, automatic toolchain for the implementation process

@ Joint work by
o S. Chevillard (floating-point polynomial approximation part)
o Ch. Lauter (implementation and proof part)
o G. Melquiond (Gappa)
o and other Arénaire members
o Written in
Pari/GP
o C, C++
o Shell scripts
o an internal language: arenaireplot

Advancements in elementary function development - Intel Portland - 10 october 2007

19

A prototype, automatic toolchain for the implementation process

@ Joint work by
o S. Chevillard (floating-point polynomial approximation part)
o Ch. Lauter (implementation and proof part)
o G. Melquiond (Gappa)
o and other Arénaire members
o Written in
Pari/GP
o C, C++
o Shell scripts
o an internal language: arenaireplot

o Targetted to
o portable C implementations
o using double, double-double and triple-double arithmetic
o with easy-to-handle Horner evaluation

Advancements in elementary function development - Intel Portland - 10 october 2007 19

Automatic handling of the following sub-problems:

Advancements in elementary function development - Intel Portland - 10 october 2007

20

Automatic handling of the following sub-problems:

o Find an appropriate range translation

Advancements in elementary function development - Intel Portland - 10 october 2007

20

Automatic handling of the following sub-problems:

o Find an appropriate range translation
o Compute an approximation polynomial p*

Advancements in elementary function development - Intel Portland - 10 october 2007

20

Automatic handling of the following sub-problems:
o Find an appropriate range translation

o Compute an approximation polynomial p*
@ Bring the coefficients of p* into floating-point form: p

Advancements in elementary function development - Intel Portland - 10 october 2007

20

Automatic handling of the following sub-problems:

Find an appropriate range translation
Compute an approximation polynomial p*
Bring the coefficients of p* into floating-point form: p

Implement p in floating-point arithmetic

Advancements in elementary function development - Intel Portland - 10 october 2007

20

Automatic handling of the following sub-problems:

o Find an appropriate range translation

Compute an approximation polynomial p*

Bring the coefficients of p* into floating-point form: p
Implement p in floating-point arithmetic

Bound round-off errors, write a proof

Advancements in elementary function development - Intel Portland - 10 october 2007

20

Automatic handling of the following sub-problems:

Find an appropriate range translation

Compute an approximation polynomial p*

Bring the coefficients of p* into floating-point form: p
Implement p in floating-point arithmetic

Bound round-off errors, write a proof

Check the proof for errors

Advancements in elementary function development - Intel Portland - 10 october 2007

20

Automatic handling of the following sub-problems:

Find an appropriate range translation

Compute an approximation polynomial p*

Bring the coefficients of p* into floating-point form: p
Implement p in floating-point arithmetic

Bound round-off errors, write a proof

Check the proof for errors

Bound and proof the approximation error: ||”;f’c||oo

Advancements in elementary function development - Intel Portland - 10 october 2007

20

Automatic handling of the following sub-problems:

Find an appropriate range translation

Compute an approximation polynomial p*

Bring the coefficients of p* into floating-point form: p
Implement p in floating-point arithmetic

Bound round-off errors, write a proof

Check the proof for errors

Bound and proof the approximation error: ||”;f’c||oo

Missing parts:
@ Analyze the behaviour of f in [a, b]

Advancements in elementary function development - Intel Portland - 10 october 2007

20

Automatic handling of the following sub-problems:

Find an appropriate range translation

Compute an approximation polynomial p*

Bring the coefficients of p* into floating-point form: p
Implement p in floating-point arithmetic

Bound round-off errors, write a proof

Check the proof for errors

Bound and proof the approximation error: ||”;f’c||oo
Missing parts:
@ Analyze the behaviour of f in [a, b]

@ Find a range reduction using tables etc.

Advancements in elementary function development - Intel Portland - 10 october 2007

20

Automatic handling of the following sub-problems:

Find an appropriate range translation

Compute an approximation polynomial p*

Bring the coefficients of p* into floating-point form: p
Implement p in floating-point arithmetic

Bound round-off errors, write a proof

Check the proof for errors

Bound and proof the approximation error: ||”;f’c||oo

Missing parts:
@ Analyze the behaviour of f in [a, b]
@ Find a range reduction using tables etc.
@ Integrate everything

Advancements in elementary function development - Intel Portland - 10 october 2007

20

Task: Implement
in the interval
| =[-278,277]

with at least 66 bits of accuracy

Advancements in elementary function development - Intel Portland - 10 october 2007

21

Task: Implement

in the interval
| =[-278,277]

with at least 66 bits of accuracy

Let' try it out...

Advancements in elementary function development - Intel Portland - 10 october 2007

21

Last functions in crlibm

Advancements in elementary function development - Intel Portland - 10 october 2007

22

Last functions in crlibm

@ sinpi(x), cospi(x), tanpi(x)

Advancements in elementary function development - Intel Portland - 10 october 2007

22

Last functions in crlibm

@ sinpi(x), cospi(x), tanpi(x)

@ correctly rounded in two approximation steps

Advancements in elementary function development - Intel Portland - 10 october 2007

22

Last functions in crlibm

@ sinpi(x), cospi(x), tanpi(x)
@ correctly rounded in two approximation steps
@ both evaluation codes generated automatically

Advancements in elementary function development - Intel Portland - 10 october 2007

22

Last functions in crlibm

@ sinpi(x), cospi(x), tanpi(x)
@ correctly rounded in two approximation steps
@ both evaluation codes generated automatically

@ duration: two days

Advancements in elementary function development - Intel Portland - 10 october 2007

22

Could this be interesting for Intel's customers?

o Faster-to-market and cheaper implementations ?

Advancements in elementary function development - Intel Portland - 10 october 2007

23

Could this be interesting for Intel's customers?

o Faster-to-market and cheaper implementations ?

o Easier approach to Gappa usage ?

Advancements in elementary function development - Intel Portland - 10 october 2007

23

Could this be interesting for Intel's customers?
o Faster-to-market and cheaper implementations ?

o Easier approach to Gappa usage ?

@ Better maintainablity of some code parts ?

Advancements in elementary function development - Intel Portland - 10 october 2007

23

Could this be interesting for Intel's customers?

Faster-to-market and cheaper implementations ?
Easier approach to Gappa usage ?

Better maintainablity of some code parts ?

. 2
Compilers that inline composite functions like es*"+1 ?

Advancements in elementary function development - Intel Portland - 10 october 2007

23

Conclusion

Conclusion

Advancements in elementary function development - Intel Portland - 10 october 2007

24

@ More correctly rounded functions:

Advancements in elementary function development - Intel Portland - 10 october 2007

25

@ More correctly rounded functions:
o High performance on average can be achieved for o(x”)

Advancements in elementary function development - Intel Portland - 10 october 2007

25

@ More correctly rounded functions:
o High performance on average can be achieved for o(x”)
o Worst case bounding might become feasible for x”:
a certificate that 2500 bits suffice for double seems to cost
about 500 machine-years

Advancements in elementary function development - Intel Portland - 10 october 2007 25

@ More correctly rounded functions:

o High performance on average can be achieved for o(x”)

o Worst case bounding might become feasible for x”:
a certificate that 2500 bits suffice for double seems to cost
about 500 machine-years

o Attacking double-extended precision:

Advancements in elementary function development - Intel Portland - 10 october 2007 25

@ More correctly rounded functions:
o High performance on average can be achieved for o(x”)
o Worst case bounding might become feasible for x”:
a certificate that 2500 bits suffice for double seems to cost
about 500 machine-years
o Attacking double-extended precision:
o Worst-case search would be possible for univariate functions

Advancements in elementary function development - Intel Portland - 10 october 2007 25

@ More correctly rounded functions:

o High performance on average can be achieved for o(x”)

o Worst case bounding might become feasible for x”:
a certificate that 2500 bits suffice for double seems to cost
about 500 machine-years

o Attacking double-extended precision:

o Worst-case search would be possible for univariate functions
o We have tools for simplifying the implementation process

Advancements in elementary function development - Intel Portland - 10 october 2007 25

@ More correctly rounded functions:
o High performance on average can be achieved for o(x”)
o Worst case bounding might become feasible for x”:
a certificate that 2500 bits suffice for double seems to cost
about 500 machine-years
o Attacking double-extended precision:
o Worst-case search would be possible for univariate functions
o We have tools for simplifying the implementation process

@ More numerical knowlegde inside high-level compilers

Advancements in elementary function development - Intel Portland - 10 october 2007 25

@ More correctly rounded functions:
o High performance on average can be achieved for o(x”)
o Worst case bounding might become feasible for x”:
a certificate that 2500 bits suffice for double seems to cost
about 500 machine-years
o Attacking double-extended precision:
o Worst-case search would be possible for univariate functions
o We have tools for simplifying the implementation process
@ More numerical knowlegde inside high-level compilers
o Remove the numerical burden from low-level C/Fortran

Advancements in elementary function development - Intel Portland - 10 october 2007

@ More correctly rounded functions:
o High performance on average can be achieved for o(x”)
o Worst case bounding might become feasible for x”:
a certificate that 2500 bits suffice for double seems to cost
about 500 machine-years
o Attacking double-extended precision:
o Worst-case search would be possible for univariate functions
o We have tools for simplifying the implementation process
@ More numerical knowlegde inside high-level compilers

o Remove the numerical burden from low-level C/Fortran
o Numerical algorithms described in a high-level language

Advancements in elementary function development - Intel Portland - 10 october 2007

@ More correctly rounded functions:
o High performance on average can be achieved for o(x”)
o Worst case bounding might become feasible for x”:
a certificate that 2500 bits suffice for double seems to cost
about 500 machine-years
o Attacking double-extended precision:
o Worst-case search would be possible for univariate functions
o We have tools for simplifying the implementation process
@ More numerical knowlegde inside high-level compilers

o Remove the numerical burden from low-level C/Fortran
o Numerical algorithms described in a high-level language
o Highly investigated by Arénaire

@ Need: more and more computational power

Advancements in elementary function development - Intel Portland - 10 october 2007

25

Thank you for your attention !

Questions ?

Advancements in elementary function development - Intel Portland - 10 october 2007

26

	Introduction
	Correct rounding of xy
	Automatic implementation of libm functions
	Conclusion

