
Advancements in (cr)libm development

Presentation at Intel - Portland

Christoph Quirin Lauter

Arénaire team
Laboratoire de l’Informatique et du Parallélisme

École Normale Supérieure de Lyon

Portland, 10 october 2007

ECOLE NORMALE SUPERIEURE DE LYON

Introduction

Introduction

Correct rounding of xy

Automatic implementation of libm functions

Conclusion

Advancements in elementary function development - Intel Portland - 10 october 2007 1

Correctly rounded elementary functions - crlibm

crlibm1: correctly rounded elementary function library

Elementary functions as in an usual libm:
exp
sin
cos
. . .

Bit-exact, correctly rounded results f(x)= ◦(f (x))

No important impact on average performance

Guaranteed worst case performance

Challenge: Correct rounding requires high accuracy and
complete proofs

1
http://lipforge.ens-lyon.fr/www/crlibm/

Advancements in elementary function development - Intel Portland - 10 october 2007 2

http://lipforge.ens-lyon.fr/www/crlibm/

Correctly rounded elementary functions - crlibm

crlibm1: correctly rounded elementary function library

Elementary functions as in an usual libm:
exp
sin
cos
. . .

Bit-exact, correctly rounded results f(x)= ◦(f (x))

No important impact on average performance

Guaranteed worst case performance

Challenge: Correct rounding requires high accuracy and
complete proofs

1
http://lipforge.ens-lyon.fr/www/crlibm/

Advancements in elementary function development - Intel Portland - 10 october 2007 2

http://lipforge.ens-lyon.fr/www/crlibm/

Correctly rounded elementary functions - crlibm

crlibm1: correctly rounded elementary function library

Elementary functions as in an usual libm:
exp
sin
cos
. . .

Bit-exact, correctly rounded results f(x)= ◦(f (x))

No important impact on average performance

Guaranteed worst case performance

Challenge: Correct rounding requires high accuracy and
complete proofs

1
http://lipforge.ens-lyon.fr/www/crlibm/

Advancements in elementary function development - Intel Portland - 10 october 2007 2

http://lipforge.ens-lyon.fr/www/crlibm/

Correctly rounded elementary functions - crlibm

crlibm1: correctly rounded elementary function library

Elementary functions as in an usual libm:
exp
sin
cos
. . .

Bit-exact, correctly rounded results f(x)= ◦(f (x))

No important impact on average performance

Guaranteed worst case performance

Challenge: Correct rounding requires high accuracy and
complete proofs

1
http://lipforge.ens-lyon.fr/www/crlibm/

Advancements in elementary function development - Intel Portland - 10 october 2007 2

http://lipforge.ens-lyon.fr/www/crlibm/

Correctly rounded elementary functions - crlibm

crlibm1: correctly rounded elementary function library

Elementary functions as in an usual libm:
exp
sin
cos
. . .

Bit-exact, correctly rounded results f(x)= ◦(f (x))

No important impact on average performance

Guaranteed worst case performance

Challenge: Correct rounding requires high accuracy and
complete proofs

1
http://lipforge.ens-lyon.fr/www/crlibm/

Advancements in elementary function development - Intel Portland - 10 october 2007 2

http://lipforge.ens-lyon.fr/www/crlibm/

Correctly rounded elementary functions - crlibm

crlibm1: correctly rounded elementary function library

Elementary functions as in an usual libm:
exp
sin
cos
. . .

Bit-exact, correctly rounded results f(x)= ◦(f (x))

No important impact on average performance

Guaranteed worst case performance

Challenge: Correct rounding requires high accuracy and
complete proofs

1
http://lipforge.ens-lyon.fr/www/crlibm/

Advancements in elementary function development - Intel Portland - 10 october 2007 2

http://lipforge.ens-lyon.fr/www/crlibm/

This talk goes on...

Advancements in the correct rounding of xy

Techniques for automatic implementation of libm functions.

Advancements in elementary function development - Intel Portland - 10 october 2007 3

Correct rounding of xy

Introduction

Correct rounding of xy

Automatic implementation of libm functions

Conclusion

Advancements in elementary function development - Intel Portland - 10 october 2007 4

Worst-case computations

Correct rounding must overcome the Table Maker’s Dilemma

◦(f (x) · (1 + ε))
?
= ◦(f (x))

Finite domain, x is FP number, x ∈ F: worst-case ε exists

∃ε > 0 .∀ε, |ε| ≤ ε .∀x ∈ F. ◦ (f (x) · (1 + ε)) = f (x)

Univariate functions implemented in double precision:

Computation of ε actually possible (Lefèvre, Stehlé et al.)
Computation of ε is a smart exhaustive search

Bivariate function xy : F2 → F
roughly 2112 valid inputs
Worst-case search of ε currently untractable

Advancements in elementary function development - Intel Portland - 10 october 2007 5

Worst-case computations

Correct rounding must overcome the Table Maker’s Dilemma

◦(f (x) · (1 + ε))
?
= ◦(f (x))

Finite domain, x is FP number, x ∈ F: worst-case ε exists

∃ε > 0 .∀ε, |ε| ≤ ε .∀x ∈ F. ◦ (f (x) · (1 + ε)) = f (x)

Univariate functions implemented in double precision:

Computation of ε actually possible (Lefèvre, Stehlé et al.)
Computation of ε is a smart exhaustive search

Bivariate function xy : F2 → F
roughly 2112 valid inputs
Worst-case search of ε currently untractable

Advancements in elementary function development - Intel Portland - 10 october 2007 5

Worst-case computations

Correct rounding must overcome the Table Maker’s Dilemma

◦(f (x) · (1 + ε))
?
= ◦(f (x))

Finite domain, x is FP number, x ∈ F: worst-case ε exists

∃ε > 0 .∀ε, |ε| ≤ ε .∀x ∈ F. ◦ (f (x) · (1 + ε)) = f (x)

Univariate functions implemented in double precision:

Computation of ε actually possible (Lefèvre, Stehlé et al.)

Computation of ε is a smart exhaustive search

Bivariate function xy : F2 → F
roughly 2112 valid inputs
Worst-case search of ε currently untractable

Advancements in elementary function development - Intel Portland - 10 october 2007 5

Worst-case computations

Correct rounding must overcome the Table Maker’s Dilemma

◦(f (x) · (1 + ε))
?
= ◦(f (x))

Finite domain, x is FP number, x ∈ F: worst-case ε exists

∃ε > 0 .∀ε, |ε| ≤ ε .∀x ∈ F. ◦ (f (x) · (1 + ε)) = f (x)

Univariate functions implemented in double precision:

Computation of ε actually possible (Lefèvre, Stehlé et al.)
Computation of ε is a smart exhaustive search

Bivariate function xy : F2 → F
roughly 2112 valid inputs
Worst-case search of ε currently untractable

Advancements in elementary function development - Intel Portland - 10 october 2007 5

Worst-case computations

Correct rounding must overcome the Table Maker’s Dilemma

◦(f (x) · (1 + ε))
?
= ◦(f (x))

Finite domain, x is FP number, x ∈ F: worst-case ε exists

∃ε > 0 .∀ε, |ε| ≤ ε .∀x ∈ F. ◦ (f (x) · (1 + ε)) = f (x)

Univariate functions implemented in double precision:

Computation of ε actually possible (Lefèvre, Stehlé et al.)
Computation of ε is a smart exhaustive search

Bivariate function xy : F2 → F

roughly 2112 valid inputs
Worst-case search of ε currently untractable

Advancements in elementary function development - Intel Portland - 10 october 2007 5

Worst-case computations

Correct rounding must overcome the Table Maker’s Dilemma

◦(f (x) · (1 + ε))
?
= ◦(f (x))

Finite domain, x is FP number, x ∈ F: worst-case ε exists

∃ε > 0 .∀ε, |ε| ≤ ε .∀x ∈ F. ◦ (f (x) · (1 + ε)) = f (x)

Univariate functions implemented in double precision:

Computation of ε actually possible (Lefèvre, Stehlé et al.)
Computation of ε is a smart exhaustive search

Bivariate function xy : F2 → F
roughly 2112 valid inputs

Worst-case search of ε currently untractable

Advancements in elementary function development - Intel Portland - 10 october 2007 5

Worst-case computations

Correct rounding must overcome the Table Maker’s Dilemma

◦(f (x) · (1 + ε))
?
= ◦(f (x))

Finite domain, x is FP number, x ∈ F: worst-case ε exists

∃ε > 0 .∀ε, |ε| ≤ ε .∀x ∈ F. ◦ (f (x) · (1 + ε)) = f (x)

Univariate functions implemented in double precision:

Computation of ε actually possible (Lefèvre, Stehlé et al.)
Computation of ε is a smart exhaustive search

Bivariate function xy : F2 → F
roughly 2112 valid inputs
Worst-case search of ε currently untractable

Advancements in elementary function development - Intel Portland - 10 october 2007 5

Correct rounding of xn

Consider xn, x ∈ F, n ∈ N, n small

Lefèvre: traditional worst-case search is possible

Consider each n separately
Current range achieved: n ≤ 255
Worst case ε = 2−117 comparable to other double precision
functions

Correctly rounded power(x,n)=◦(xn)

Guaranteed worst-case performance for small n
Situation comparable to sin and cos:

I small values of n (resp. x for sin) are the most interesting
I Ziv’s rounding technique allows for correct rounding outside

the known domain

This research paves the road for xy

Advancements in elementary function development - Intel Portland - 10 october 2007 6

Correct rounding of xn

Consider xn, x ∈ F, n ∈ N, n small

Lefèvre: traditional worst-case search is possible

Consider each n separately
Current range achieved: n ≤ 255
Worst case ε = 2−117 comparable to other double precision
functions

Correctly rounded power(x,n)=◦(xn)

Guaranteed worst-case performance for small n

Situation comparable to sin and cos:
I small values of n (resp. x for sin) are the most interesting
I Ziv’s rounding technique allows for correct rounding outside

the known domain

This research paves the road for xy

Advancements in elementary function development - Intel Portland - 10 october 2007 6

Correct rounding of xn

Consider xn, x ∈ F, n ∈ N, n small

Lefèvre: traditional worst-case search is possible

Consider each n separately
Current range achieved: n ≤ 255
Worst case ε = 2−117 comparable to other double precision
functions

Correctly rounded power(x,n)=◦(xn)

Guaranteed worst-case performance for small n
Situation comparable to sin and cos:

I small values of n (resp. x for sin) are the most interesting
I Ziv’s rounding technique allows for correct rounding outside

the known domain

This research paves the road for xy

Advancements in elementary function development - Intel Portland - 10 october 2007 6

Correct rounding of xn

Consider xn, x ∈ F, n ∈ N, n small

Lefèvre: traditional worst-case search is possible

Consider each n separately
Current range achieved: n ≤ 255
Worst case ε = 2−117 comparable to other double precision
functions

Correctly rounded power(x,n)=◦(xn)

Guaranteed worst-case performance for small n
Situation comparable to sin and cos:

I small values of n (resp. x for sin) are the most interesting
I Ziv’s rounding technique allows for correct rounding outside

the known domain

This research paves the road for xy

Advancements in elementary function development - Intel Portland - 10 october 2007 6

Correct rounding of xn

Consider xn, x ∈ F, n ∈ N, n small

Lefèvre: traditional worst-case search is possible

Consider each n separately
Current range achieved: n ≤ 255
Worst case ε = 2−117 comparable to other double precision
functions

Correctly rounded power(x,n)=◦(xn)

Guaranteed worst-case performance for small n
Situation comparable to sin and cos:

I small values of n (resp. x for sin) are the most interesting
I Ziv’s rounding technique allows for correct rounding outside

the known domain

This research paves the road for xy

Advancements in elementary function development - Intel Portland - 10 october 2007 6

Ziv’s rounding technique for xy

Ziv’s rounding technique:
Decrease error ε of approximation xy · (1 + ε) until rounding
becomes possible

◦(xy · (1 + ε)) = ◦(xy)

Issue:
For ensuring termination, rounding boundary cases must be
filtered out

Rounding boundary

Interval Z

Exact value xy

Approximation

Rounding boundary cases:
Complex set for xy :

RB = {xy = z |x , y ∈ F53, z ∈ F54}

Advancements in elementary function development - Intel Portland - 10 october 2007 7

Ziv’s rounding technique for xy

Ziv’s rounding technique:
Decrease error ε of approximation xy · (1 + ε) until rounding
becomes possible

◦(xy · (1 + ε)) = ◦(xy)

Issue:
For ensuring termination, rounding boundary cases must be
filtered out

Rounding boundary

Interval Z

Exact value xy

Approximation

Rounding boundary cases:
Complex set for xy :

RB = {xy = z |x , y ∈ F53, z ∈ F54}

Advancements in elementary function development - Intel Portland - 10 october 2007 7

Ziv’s rounding technique for xy

Ziv’s rounding technique:
Decrease error ε of approximation xy · (1 + ε) until rounding
becomes possible

◦(xy · (1 + ε)) = ◦(xy)

Issue:
For ensuring termination, rounding boundary cases must be
filtered out

Rounding boundary

Interval Z

Exact value xy

Approximation

Rounding boundary cases:
Complex set for xy :

RB = {xy = z |x , y ∈ F53, z ∈ F54}
Advancements in elementary function development - Intel Portland - 10 october 2007 7

Previous approaches

Previous approaches:

Rewrite
RB = {xy = z |x , y ∈ F53, z ∈ F54}

as
x = 2E ·m, y = 2F · n, z = 2G · k

E · 2F · n = G , (mn)2
F ·n = k

Mainly test whether

(mn)2
F

= k

Cost of the test in double precision:

up to 5 square root extractions
up to 10 doubled precision multiplies
pipeline broken by many ifs

Advancements in elementary function development - Intel Portland - 10 october 2007 8

Previous approaches

Previous approaches:

Rewrite
RB = {xy = z |x , y ∈ F53, z ∈ F54}

as
x = 2E ·m, y = 2F · n, z = 2G · k

E · 2F · n = G , (mn)2
F ·n = k

Mainly test whether

(mn)2
F

= k

Cost of the test in double precision:

up to 5 square root extractions
up to 10 doubled precision multiplies
pipeline broken by many ifs

Advancements in elementary function development - Intel Portland - 10 october 2007 8

Previous approaches

Previous approaches:

Rewrite
RB = {xy = z |x , y ∈ F53, z ∈ F54}

as
x = 2E ·m, y = 2F · n, z = 2G · k

E · 2F · n = G , (mn)2
F ·n = k

Mainly test whether

(mn)2
F

= k

Cost of the test in double precision:

up to 5 square root extractions
up to 10 doubled precision multiplies
pipeline broken by many ifs

Advancements in elementary function development - Intel Portland - 10 october 2007 8

An efficient rounding boundary test for xy – 1

Use worst-case information for rounding boundary testing

Exact case Exact case

Gaps without cases

Midpoint case

Midpoint caseNot-rounding-boundary cases

Not-rounding-boundary cases

Approximation Approximation interval Z

Advancements in elementary function development - Intel Portland - 10 october 2007 9

An efficient rounding boundary test for xy – 2

Worst-case actually unknown for xy !

All rounding boundary cases for xy in double precision lie in a
subset

S =
{
(x , y) ∈ F2

53 | y ∈ N, 2 ≤ y ≤ 35
}

∪
{

(m, 2Fn) ∈ F2
53 | F ∈ Z, −5 ≤ F < 0, n ∈ 2N + 1,

3 ≤ n ≤ 35, m ∈ 2N + 1}

Worst-case search is tractable for (x , y) ∈ S
Testing if (x , y) ∈ S is easy: straightforward comparisons

Experimental results:

39% speed-up on average w.r.t. previous implementations
Overhead of RB detection decreased from 50% to 9%
Still more optimization: 99.1% of RB cases imply y = 3

2

Advancements in elementary function development - Intel Portland - 10 october 2007 10

An efficient rounding boundary test for xy – 2

Worst-case actually unknown for xy !

All rounding boundary cases for xy in double precision lie in a
subset

S =
{
(x , y) ∈ F2

53 | y ∈ N, 2 ≤ y ≤ 35
}

∪
{

(m, 2Fn) ∈ F2
53 | F ∈ Z, −5 ≤ F < 0, n ∈ 2N + 1,

3 ≤ n ≤ 35, m ∈ 2N + 1}

Worst-case search is tractable for (x , y) ∈ S
Testing if (x , y) ∈ S is easy: straightforward comparisons

Experimental results:

39% speed-up on average w.r.t. previous implementations
Overhead of RB detection decreased from 50% to 9%
Still more optimization: 99.1% of RB cases imply y = 3

2

Advancements in elementary function development - Intel Portland - 10 october 2007 10

An efficient rounding boundary test for xy – 2

Worst-case actually unknown for xy !

All rounding boundary cases for xy in double precision lie in a
subset

S =
{
(x , y) ∈ F2

53 | y ∈ N, 2 ≤ y ≤ 35
}

∪
{

(m, 2Fn) ∈ F2
53 | F ∈ Z, −5 ≤ F < 0, n ∈ 2N + 1,

3 ≤ n ≤ 35, m ∈ 2N + 1}

Worst-case search is tractable for (x , y) ∈ S

Testing if (x , y) ∈ S is easy: straightforward comparisons

Experimental results:

39% speed-up on average w.r.t. previous implementations
Overhead of RB detection decreased from 50% to 9%
Still more optimization: 99.1% of RB cases imply y = 3

2

Advancements in elementary function development - Intel Portland - 10 october 2007 10

An efficient rounding boundary test for xy – 2

Worst-case actually unknown for xy !

All rounding boundary cases for xy in double precision lie in a
subset

S =
{
(x , y) ∈ F2

53 | y ∈ N, 2 ≤ y ≤ 35
}

∪
{

(m, 2Fn) ∈ F2
53 | F ∈ Z, −5 ≤ F < 0, n ∈ 2N + 1,

3 ≤ n ≤ 35, m ∈ 2N + 1}

Worst-case search is tractable for (x , y) ∈ S
Testing if (x , y) ∈ S is easy: straightforward comparisons

Experimental results:

39% speed-up on average w.r.t. previous implementations
Overhead of RB detection decreased from 50% to 9%
Still more optimization: 99.1% of RB cases imply y = 3

2

Advancements in elementary function development - Intel Portland - 10 october 2007 10

An efficient rounding boundary test for xy – 2

Worst-case actually unknown for xy !

All rounding boundary cases for xy in double precision lie in a
subset

S =
{
(x , y) ∈ F2

53 | y ∈ N, 2 ≤ y ≤ 35
}

∪
{

(m, 2Fn) ∈ F2
53 | F ∈ Z, −5 ≤ F < 0, n ∈ 2N + 1,

3 ≤ n ≤ 35, m ∈ 2N + 1}

Worst-case search is tractable for (x , y) ∈ S
Testing if (x , y) ∈ S is easy: straightforward comparisons

Experimental results:

39% speed-up on average w.r.t. previous implementations
Overhead of RB detection decreased from 50% to 9%
Still more optimization: 99.1% of RB cases imply y = 3

2

Advancements in elementary function development - Intel Portland - 10 october 2007 10

An efficient rounding boundary test for xy – 2

Worst-case actually unknown for xy !

All rounding boundary cases for xy in double precision lie in a
subset

S =
{
(x , y) ∈ F2

53 | y ∈ N, 2 ≤ y ≤ 35
}

∪
{

(m, 2Fn) ∈ F2
53 | F ∈ Z, −5 ≤ F < 0, n ∈ 2N + 1,

3 ≤ n ≤ 35, m ∈ 2N + 1}

Worst-case search is tractable for (x , y) ∈ S
Testing if (x , y) ∈ S is easy: straightforward comparisons

Experimental results:

39% speed-up on average w.r.t. previous implementations

Overhead of RB detection decreased from 50% to 9%
Still more optimization: 99.1% of RB cases imply y = 3

2

Advancements in elementary function development - Intel Portland - 10 october 2007 10

An efficient rounding boundary test for xy – 2

Worst-case actually unknown for xy !

All rounding boundary cases for xy in double precision lie in a
subset

S =
{
(x , y) ∈ F2

53 | y ∈ N, 2 ≤ y ≤ 35
}

∪
{

(m, 2Fn) ∈ F2
53 | F ∈ Z, −5 ≤ F < 0, n ∈ 2N + 1,

3 ≤ n ≤ 35, m ∈ 2N + 1}

Worst-case search is tractable for (x , y) ∈ S
Testing if (x , y) ∈ S is easy: straightforward comparisons

Experimental results:

39% speed-up on average w.r.t. previous implementations
Overhead of RB detection decreased from 50% to 9%

Still more optimization: 99.1% of RB cases imply y = 3
2

Advancements in elementary function development - Intel Portland - 10 october 2007 10

An efficient rounding boundary test for xy – 2

Worst-case actually unknown for xy !

All rounding boundary cases for xy in double precision lie in a
subset

S =
{
(x , y) ∈ F2

53 | y ∈ N, 2 ≤ y ≤ 35
}

∪
{

(m, 2Fn) ∈ F2
53 | F ∈ Z, −5 ≤ F < 0, n ∈ 2N + 1,

3 ≤ n ≤ 35, m ∈ 2N + 1}

Worst-case search is tractable for (x , y) ∈ S
Testing if (x , y) ∈ S is easy: straightforward comparisons

Experimental results:

39% speed-up on average w.r.t. previous implementations
Overhead of RB detection decreased from 50% to 9%
Still more optimization: 99.1% of RB cases imply y = 3

2

Advancements in elementary function development - Intel Portland - 10 october 2007 10

An efficient rounding boundary test for xy – 3

Details can be found at

http://prunel.ccsd.cnrs.fr/ensl-00169409/

Advancements in elementary function development - Intel Portland - 10 october 2007 11

http://prunel.ccsd.cnrs.fr/ensl-00169409/

Automatic implementation of
libm functions

Introduction

Correct rounding of xy

Automatic implementation of libm functions

Conclusion

Advancements in elementary function development - Intel Portland - 10 october 2007 12

Function development by Arénaire members – 1

First function in crlibm

exp(x) by David Defour

correctly rounded in two approximation steps

portable C code

integer library for second step

complex, hand-written proof

duration: a Ph.D. thesis

Advancements in elementary function development - Intel Portland - 10 october 2007 13

Function development by Arénaire members – 1

First function in crlibm

exp(x) by David Defour

correctly rounded in two approximation steps

portable C code

integer library for second step

complex, hand-written proof

duration: a Ph.D. thesis

Advancements in elementary function development - Intel Portland - 10 october 2007 13

Function development by Arénaire members – 1

First function in crlibm

exp(x) by David Defour

correctly rounded in two approximation steps

portable C code

integer library for second step

complex, hand-written proof

duration: a Ph.D. thesis

Advancements in elementary function development - Intel Portland - 10 october 2007 13

Function development by Arénaire members – 1

First function in crlibm

exp(x) by David Defour

correctly rounded in two approximation steps

portable C code

integer library for second step

complex, hand-written proof

duration: a Ph.D. thesis

Advancements in elementary function development - Intel Portland - 10 october 2007 13

Function development by Arénaire members – 1

First function in crlibm

exp(x) by David Defour

correctly rounded in two approximation steps

portable C code

integer library for second step

complex, hand-written proof

duration: a Ph.D. thesis

Advancements in elementary function development - Intel Portland - 10 october 2007 13

Function development by Arénaire members – 1

First function in crlibm

exp(x) by David Defour

correctly rounded in two approximation steps

portable C code

integer library for second step

complex, hand-written proof

duration: a Ph.D. thesis

Advancements in elementary function development - Intel Portland - 10 october 2007 13

Function development by Arénaire members – 2

An alternative implementation

exp(x) by myself

correctly rounded in one approximation step

usage of Itanium specific features through assembler

complex, hand-written, wrong proof

duration: a summer intern-ship at Intel Nizhny Novgorod

Advancements in elementary function development - Intel Portland - 10 october 2007 14

Function development by Arénaire members – 2

An alternative implementation

exp(x) by myself

correctly rounded in one approximation step

usage of Itanium specific features through assembler

complex, hand-written, wrong proof

duration: a summer intern-ship at Intel Nizhny Novgorod

Advancements in elementary function development - Intel Portland - 10 october 2007 14

Function development by Arénaire members – 2

An alternative implementation

exp(x) by myself

correctly rounded in one approximation step

usage of Itanium specific features through assembler

complex, hand-written, wrong proof

duration: a summer intern-ship at Intel Nizhny Novgorod

Advancements in elementary function development - Intel Portland - 10 october 2007 14

Function development by Arénaire members – 2

An alternative implementation

exp(x) by myself

correctly rounded in one approximation step

usage of Itanium specific features through assembler

complex, hand-written, wrong proof

duration: a summer intern-ship at Intel Nizhny Novgorod

Advancements in elementary function development - Intel Portland - 10 october 2007 14

Function development by Arénaire members – 2

An alternative implementation

exp(x) by myself

correctly rounded in one approximation step

usage of Itanium specific features through assembler

complex, hand-written, wrong proof

duration: a summer intern-ship at Intel Nizhny Novgorod

Advancements in elementary function development - Intel Portland - 10 october 2007 14

Function development by Arénaire members – 2

An alternative implementation

exp(x) by myself

correctly rounded in one approximation step

usage of Itanium specific features through assembler

complex, hand-written, wrong proof

duration: a summer intern-ship at Intel Nizhny Novgorod

Advancements in elementary function development - Intel Portland - 10 october 2007 14

Function development by Arénaire members – 3

Further functions in crlibm: atan(x), log(x)...

Maple scripts generating header files

Computation of infinite norms in Maple

Hand-written Gappa proofs

duration: about 1 month per function

Advancements in elementary function development - Intel Portland - 10 october 2007 15

Function development by Arénaire members – 3

Further functions in crlibm: atan(x), log(x)...

Maple scripts generating header files

Computation of infinite norms in Maple

Hand-written Gappa proofs

duration: about 1 month per function

Advancements in elementary function development - Intel Portland - 10 october 2007 15

Function development by Arénaire members – 3

Further functions in crlibm: atan(x), log(x)...

Maple scripts generating header files

Computation of infinite norms in Maple

Hand-written Gappa proofs

duration: about 1 month per function

Advancements in elementary function development - Intel Portland - 10 october 2007 15

Function development by Arénaire members – 3

Further functions in crlibm: atan(x), log(x)...

Maple scripts generating header files

Computation of infinite norms in Maple

Hand-written Gappa proofs

duration: about 1 month per function

Advancements in elementary function development - Intel Portland - 10 october 2007 15

Function development by Arénaire members – 3

Further functions in crlibm: atan(x), log(x)...

Maple scripts generating header files

Computation of infinite norms in Maple

Hand-written Gappa proofs

duration: about 1 month per function

Advancements in elementary function development - Intel Portland - 10 october 2007 15

Function development at Intel

And at Intel?

How many man-hours are accounted per libm function?

Advancements in elementary function development - Intel Portland - 10 october 2007 16

What is the issue?

Why is the Arénaire development process so slow?

Actually, I thought we were always doing the same things...

Advancements in elementary function development - Intel Portland - 10 october 2007 17

What is the issue?

Why is the Arénaire development process so slow?

Actually, I thought we were always doing the same things...

Advancements in elementary function development - Intel Portland - 10 october 2007 17

Steps in the implementation of a function

Task: implement f in a domain [a, b] with an accuracy of k bits

Analyze the behaviour of f in [a, b]

Find an appropriate range reduction

Compute an approximation polynomial p∗

Bring the coefficients of p∗ into floating-point form: p

Implement p in floating-point arithmetic

Bound round-off errors, write a proof

Check the proof for mistakes

Bound and proof the approximation error: ‖p−f
f ‖∞

Integrate everything

Advancements in elementary function development - Intel Portland - 10 october 2007 18

Steps in the implementation of a function

Task: implement f in a domain [a, b] with an accuracy of k bits

Analyze the behaviour of f in [a, b]

Find an appropriate range reduction

Compute an approximation polynomial p∗

Bring the coefficients of p∗ into floating-point form: p

Implement p in floating-point arithmetic

Bound round-off errors, write a proof

Check the proof for mistakes

Bound and proof the approximation error: ‖p−f
f ‖∞

Integrate everything

Advancements in elementary function development - Intel Portland - 10 october 2007 18

Steps in the implementation of a function

Task: implement f in a domain [a, b] with an accuracy of k bits

Analyze the behaviour of f in [a, b]

Find an appropriate range reduction

Compute an approximation polynomial p∗

Bring the coefficients of p∗ into floating-point form: p

Implement p in floating-point arithmetic

Bound round-off errors, write a proof

Check the proof for mistakes

Bound and proof the approximation error: ‖p−f
f ‖∞

Integrate everything

Advancements in elementary function development - Intel Portland - 10 october 2007 18

Steps in the implementation of a function

Task: implement f in a domain [a, b] with an accuracy of k bits

Analyze the behaviour of f in [a, b]

Find an appropriate range reduction

Compute an approximation polynomial p∗

Bring the coefficients of p∗ into floating-point form: p

Implement p in floating-point arithmetic

Bound round-off errors, write a proof

Check the proof for mistakes

Bound and proof the approximation error: ‖p−f
f ‖∞

Integrate everything

Advancements in elementary function development - Intel Portland - 10 october 2007 18

Steps in the implementation of a function

Task: implement f in a domain [a, b] with an accuracy of k bits

Analyze the behaviour of f in [a, b]

Find an appropriate range reduction

Compute an approximation polynomial p∗

Bring the coefficients of p∗ into floating-point form: p

Implement p in floating-point arithmetic

Bound round-off errors, write a proof

Check the proof for mistakes

Bound and proof the approximation error: ‖p−f
f ‖∞

Integrate everything

Advancements in elementary function development - Intel Portland - 10 october 2007 18

Steps in the implementation of a function

Task: implement f in a domain [a, b] with an accuracy of k bits

Analyze the behaviour of f in [a, b]

Find an appropriate range reduction

Compute an approximation polynomial p∗

Bring the coefficients of p∗ into floating-point form: p

Implement p in floating-point arithmetic

Bound round-off errors, write a proof

Check the proof for mistakes

Bound and proof the approximation error: ‖p−f
f ‖∞

Integrate everything

Advancements in elementary function development - Intel Portland - 10 october 2007 18

Steps in the implementation of a function

Task: implement f in a domain [a, b] with an accuracy of k bits

Analyze the behaviour of f in [a, b]

Find an appropriate range reduction

Compute an approximation polynomial p∗

Bring the coefficients of p∗ into floating-point form: p

Implement p in floating-point arithmetic

Bound round-off errors, write a proof

Check the proof for mistakes

Bound and proof the approximation error: ‖p−f
f ‖∞

Integrate everything

Advancements in elementary function development - Intel Portland - 10 october 2007 18

Steps in the implementation of a function

Task: implement f in a domain [a, b] with an accuracy of k bits

Analyze the behaviour of f in [a, b]

Find an appropriate range reduction

Compute an approximation polynomial p∗

Bring the coefficients of p∗ into floating-point form: p

Implement p in floating-point arithmetic

Bound round-off errors, write a proof

Check the proof for mistakes

Bound and proof the approximation error: ‖p−f
f ‖∞

Integrate everything

Advancements in elementary function development - Intel Portland - 10 october 2007 18

Steps in the implementation of a function

Task: implement f in a domain [a, b] with an accuracy of k bits

Analyze the behaviour of f in [a, b]

Find an appropriate range reduction

Compute an approximation polynomial p∗

Bring the coefficients of p∗ into floating-point form: p

Implement p in floating-point arithmetic

Bound round-off errors, write a proof

Check the proof for mistakes

Bound and proof the approximation error: ‖p−f
f ‖∞

Integrate everything

Advancements in elementary function development - Intel Portland - 10 october 2007 18

Steps in the implementation of a function

Task: implement f in a domain [a, b] with an accuracy of k bits

Analyze the behaviour of f in [a, b]

Find an appropriate range reduction

Compute an approximation polynomial p∗

Bring the coefficients of p∗ into floating-point form: p

Implement p in floating-point arithmetic

Bound round-off errors, write a proof

Check the proof for mistakes

Bound and proof the approximation error: ‖p−f
f ‖∞

Integrate everything

Advancements in elementary function development - Intel Portland - 10 october 2007 18

A prototype toolchain – 1

A prototype, automatic toolchain for the implementation process

Joint work by
S. Chevillard (floating-point polynomial approximation part)
Ch. Lauter (implementation and proof part)
G. Melquiond (Gappa)
and other Arénaire members

Written in
Pari/GP
C, C++
Shell scripts
an internal language: arenaireplot

Targetted to
portable C implementations
using double, double-double and triple-double arithmetic
with easy-to-handle Horner evaluation

Advancements in elementary function development - Intel Portland - 10 october 2007 19

A prototype toolchain – 1

A prototype, automatic toolchain for the implementation process

Joint work by
S. Chevillard (floating-point polynomial approximation part)
Ch. Lauter (implementation and proof part)
G. Melquiond (Gappa)
and other Arénaire members

Written in
Pari/GP
C, C++
Shell scripts
an internal language: arenaireplot

Targetted to
portable C implementations
using double, double-double and triple-double arithmetic
with easy-to-handle Horner evaluation

Advancements in elementary function development - Intel Portland - 10 october 2007 19

A prototype toolchain – 1

A prototype, automatic toolchain for the implementation process

Joint work by
S. Chevillard (floating-point polynomial approximation part)
Ch. Lauter (implementation and proof part)
G. Melquiond (Gappa)
and other Arénaire members

Written in
Pari/GP
C, C++
Shell scripts
an internal language: arenaireplot

Targetted to
portable C implementations
using double, double-double and triple-double arithmetic
with easy-to-handle Horner evaluation

Advancements in elementary function development - Intel Portland - 10 october 2007 19

A prototype toolchain – 1

A prototype, automatic toolchain for the implementation process

Joint work by
S. Chevillard (floating-point polynomial approximation part)
Ch. Lauter (implementation and proof part)
G. Melquiond (Gappa)
and other Arénaire members

Written in
Pari/GP
C, C++
Shell scripts
an internal language: arenaireplot

Targetted to
portable C implementations
using double, double-double and triple-double arithmetic
with easy-to-handle Horner evaluation

Advancements in elementary function development - Intel Portland - 10 october 2007 19

A prototype toolchain – 2

Automatic handling of the following sub-problems:

Find an appropriate range translation

Compute an approximation polynomial p∗

Bring the coefficients of p∗ into floating-point form: p

Implement p in floating-point arithmetic

Bound round-off errors, write a proof

Check the proof for errors

Bound and proof the approximation error: ‖p−f
f ‖∞

Missing parts:

Analyze the behaviour of f in [a, b]

Find a range reduction using tables etc.

Integrate everything

Advancements in elementary function development - Intel Portland - 10 october 2007 20

A prototype toolchain – 2

Automatic handling of the following sub-problems:

Find an appropriate range translation

Compute an approximation polynomial p∗

Bring the coefficients of p∗ into floating-point form: p

Implement p in floating-point arithmetic

Bound round-off errors, write a proof

Check the proof for errors

Bound and proof the approximation error: ‖p−f
f ‖∞

Missing parts:

Analyze the behaviour of f in [a, b]

Find a range reduction using tables etc.

Integrate everything

Advancements in elementary function development - Intel Portland - 10 october 2007 20

A prototype toolchain – 2

Automatic handling of the following sub-problems:

Find an appropriate range translation

Compute an approximation polynomial p∗

Bring the coefficients of p∗ into floating-point form: p

Implement p in floating-point arithmetic

Bound round-off errors, write a proof

Check the proof for errors

Bound and proof the approximation error: ‖p−f
f ‖∞

Missing parts:

Analyze the behaviour of f in [a, b]

Find a range reduction using tables etc.

Integrate everything

Advancements in elementary function development - Intel Portland - 10 october 2007 20

A prototype toolchain – 2

Automatic handling of the following sub-problems:

Find an appropriate range translation

Compute an approximation polynomial p∗

Bring the coefficients of p∗ into floating-point form: p

Implement p in floating-point arithmetic

Bound round-off errors, write a proof

Check the proof for errors

Bound and proof the approximation error: ‖p−f
f ‖∞

Missing parts:

Analyze the behaviour of f in [a, b]

Find a range reduction using tables etc.

Integrate everything

Advancements in elementary function development - Intel Portland - 10 october 2007 20

A prototype toolchain – 2

Automatic handling of the following sub-problems:

Find an appropriate range translation

Compute an approximation polynomial p∗

Bring the coefficients of p∗ into floating-point form: p

Implement p in floating-point arithmetic

Bound round-off errors, write a proof

Check the proof for errors

Bound and proof the approximation error: ‖p−f
f ‖∞

Missing parts:

Analyze the behaviour of f in [a, b]

Find a range reduction using tables etc.

Integrate everything

Advancements in elementary function development - Intel Portland - 10 october 2007 20

A prototype toolchain – 2

Automatic handling of the following sub-problems:

Find an appropriate range translation

Compute an approximation polynomial p∗

Bring the coefficients of p∗ into floating-point form: p

Implement p in floating-point arithmetic

Bound round-off errors, write a proof

Check the proof for errors

Bound and proof the approximation error: ‖p−f
f ‖∞

Missing parts:

Analyze the behaviour of f in [a, b]

Find a range reduction using tables etc.

Integrate everything

Advancements in elementary function development - Intel Portland - 10 october 2007 20

A prototype toolchain – 2

Automatic handling of the following sub-problems:

Find an appropriate range translation

Compute an approximation polynomial p∗

Bring the coefficients of p∗ into floating-point form: p

Implement p in floating-point arithmetic

Bound round-off errors, write a proof

Check the proof for errors

Bound and proof the approximation error: ‖p−f
f ‖∞

Missing parts:

Analyze the behaviour of f in [a, b]

Find a range reduction using tables etc.

Integrate everything

Advancements in elementary function development - Intel Portland - 10 october 2007 20

A prototype toolchain – 2

Automatic handling of the following sub-problems:

Find an appropriate range translation

Compute an approximation polynomial p∗

Bring the coefficients of p∗ into floating-point form: p

Implement p in floating-point arithmetic

Bound round-off errors, write a proof

Check the proof for errors

Bound and proof the approximation error: ‖p−f
f ‖∞

Missing parts:

Analyze the behaviour of f in [a, b]

Find a range reduction using tables etc.

Integrate everything

Advancements in elementary function development - Intel Portland - 10 october 2007 20

A prototype toolchain – 2

Automatic handling of the following sub-problems:

Find an appropriate range translation

Compute an approximation polynomial p∗

Bring the coefficients of p∗ into floating-point form: p

Implement p in floating-point arithmetic

Bound round-off errors, write a proof

Check the proof for errors

Bound and proof the approximation error: ‖p−f
f ‖∞

Missing parts:

Analyze the behaviour of f in [a, b]

Find a range reduction using tables etc.

Integrate everything

Advancements in elementary function development - Intel Portland - 10 october 2007 20

A prototype toolchain – 2

Automatic handling of the following sub-problems:

Find an appropriate range translation

Compute an approximation polynomial p∗

Bring the coefficients of p∗ into floating-point form: p

Implement p in floating-point arithmetic

Bound round-off errors, write a proof

Check the proof for errors

Bound and proof the approximation error: ‖p−f
f ‖∞

Missing parts:

Analyze the behaviour of f in [a, b]

Find a range reduction using tables etc.

Integrate everything

Advancements in elementary function development - Intel Portland - 10 october 2007 20

A prototype toolchain – 2

Automatic handling of the following sub-problems:

Find an appropriate range translation

Compute an approximation polynomial p∗

Bring the coefficients of p∗ into floating-point form: p

Implement p in floating-point arithmetic

Bound round-off errors, write a proof

Check the proof for errors

Bound and proof the approximation error: ‖p−f
f ‖∞

Missing parts:

Analyze the behaviour of f in [a, b]

Find a range reduction using tables etc.

Integrate everything

Advancements in elementary function development - Intel Portland - 10 october 2007 20

Demonstration

Task: Implement
f (x) = ecos x2+1

in the interval
I = [−2−8; 2−5]

with at least 66 bits of accuracy

Let’ try it out...

Advancements in elementary function development - Intel Portland - 10 october 2007 21

Demonstration

Task: Implement
f (x) = ecos x2+1

in the interval
I = [−2−8; 2−5]

with at least 66 bits of accuracy

Let’ try it out...

Advancements in elementary function development - Intel Portland - 10 october 2007 21

Results on new functions

Last functions in crlibm

sinpi(x), cospi(x), tanpi(x)

correctly rounded in two approximation steps

both evaluation codes generated automatically

duration: two days

Advancements in elementary function development - Intel Portland - 10 october 2007 22

Results on new functions

Last functions in crlibm

sinpi(x), cospi(x), tanpi(x)

correctly rounded in two approximation steps

both evaluation codes generated automatically

duration: two days

Advancements in elementary function development - Intel Portland - 10 october 2007 22

Results on new functions

Last functions in crlibm

sinpi(x), cospi(x), tanpi(x)

correctly rounded in two approximation steps

both evaluation codes generated automatically

duration: two days

Advancements in elementary function development - Intel Portland - 10 october 2007 22

Results on new functions

Last functions in crlibm

sinpi(x), cospi(x), tanpi(x)

correctly rounded in two approximation steps

both evaluation codes generated automatically

duration: two days

Advancements in elementary function development - Intel Portland - 10 october 2007 22

Results on new functions

Last functions in crlibm

sinpi(x), cospi(x), tanpi(x)

correctly rounded in two approximation steps

both evaluation codes generated automatically

duration: two days

Advancements in elementary function development - Intel Portland - 10 october 2007 22

And Intel’s customers ?

Could this be interesting for Intel’s customers?

Faster-to-market and cheaper implementations ?

Easier approach to Gappa usage ?

Better maintainablity of some code parts ?

Compilers that inline composite functions like ecos x2+1 ?

Advancements in elementary function development - Intel Portland - 10 october 2007 23

And Intel’s customers ?

Could this be interesting for Intel’s customers?

Faster-to-market and cheaper implementations ?

Easier approach to Gappa usage ?

Better maintainablity of some code parts ?

Compilers that inline composite functions like ecos x2+1 ?

Advancements in elementary function development - Intel Portland - 10 october 2007 23

And Intel’s customers ?

Could this be interesting for Intel’s customers?

Faster-to-market and cheaper implementations ?

Easier approach to Gappa usage ?

Better maintainablity of some code parts ?

Compilers that inline composite functions like ecos x2+1 ?

Advancements in elementary function development - Intel Portland - 10 october 2007 23

And Intel’s customers ?

Could this be interesting for Intel’s customers?

Faster-to-market and cheaper implementations ?

Easier approach to Gappa usage ?

Better maintainablity of some code parts ?

Compilers that inline composite functions like ecos x2+1 ?

Advancements in elementary function development - Intel Portland - 10 october 2007 23

Conclusion

Introduction

Correct rounding of xy

Automatic implementation of libm functions

Conclusion

Advancements in elementary function development - Intel Portland - 10 october 2007 24

Conclusion and outlooks...

More correctly rounded functions:

High performance on average can be achieved for ◦(xy)
Worst case bounding might become feasible for xy :
a certificate that 2500 bits suffice for double seems to cost
about 500 machine-years

Attacking double-extended precision:

Worst-case search would be possible for univariate functions
We have tools for simplifying the implementation process

More numerical knowlegde inside high-level compilers

Remove the numerical burden from low-level C/Fortran
Numerical algorithms described in a high-level language
Highly investigated by Arénaire

Need: more and more computational power

Advancements in elementary function development - Intel Portland - 10 october 2007 25

Conclusion and outlooks...

More correctly rounded functions:

High performance on average can be achieved for ◦(xy)

Worst case bounding might become feasible for xy :
a certificate that 2500 bits suffice for double seems to cost
about 500 machine-years

Attacking double-extended precision:

Worst-case search would be possible for univariate functions
We have tools for simplifying the implementation process

More numerical knowlegde inside high-level compilers

Remove the numerical burden from low-level C/Fortran
Numerical algorithms described in a high-level language
Highly investigated by Arénaire

Need: more and more computational power

Advancements in elementary function development - Intel Portland - 10 october 2007 25

Conclusion and outlooks...

More correctly rounded functions:

High performance on average can be achieved for ◦(xy)
Worst case bounding might become feasible for xy :
a certificate that 2500 bits suffice for double seems to cost
about 500 machine-years

Attacking double-extended precision:

Worst-case search would be possible for univariate functions
We have tools for simplifying the implementation process

More numerical knowlegde inside high-level compilers

Remove the numerical burden from low-level C/Fortran
Numerical algorithms described in a high-level language
Highly investigated by Arénaire

Need: more and more computational power

Advancements in elementary function development - Intel Portland - 10 october 2007 25

Conclusion and outlooks...

More correctly rounded functions:

High performance on average can be achieved for ◦(xy)
Worst case bounding might become feasible for xy :
a certificate that 2500 bits suffice for double seems to cost
about 500 machine-years

Attacking double-extended precision:

Worst-case search would be possible for univariate functions
We have tools for simplifying the implementation process

More numerical knowlegde inside high-level compilers

Remove the numerical burden from low-level C/Fortran
Numerical algorithms described in a high-level language
Highly investigated by Arénaire

Need: more and more computational power

Advancements in elementary function development - Intel Portland - 10 october 2007 25

Conclusion and outlooks...

More correctly rounded functions:

High performance on average can be achieved for ◦(xy)
Worst case bounding might become feasible for xy :
a certificate that 2500 bits suffice for double seems to cost
about 500 machine-years

Attacking double-extended precision:

Worst-case search would be possible for univariate functions

We have tools for simplifying the implementation process

More numerical knowlegde inside high-level compilers

Remove the numerical burden from low-level C/Fortran
Numerical algorithms described in a high-level language
Highly investigated by Arénaire

Need: more and more computational power

Advancements in elementary function development - Intel Portland - 10 october 2007 25

Conclusion and outlooks...

More correctly rounded functions:

High performance on average can be achieved for ◦(xy)
Worst case bounding might become feasible for xy :
a certificate that 2500 bits suffice for double seems to cost
about 500 machine-years

Attacking double-extended precision:

Worst-case search would be possible for univariate functions
We have tools for simplifying the implementation process

More numerical knowlegde inside high-level compilers

Remove the numerical burden from low-level C/Fortran
Numerical algorithms described in a high-level language
Highly investigated by Arénaire

Need: more and more computational power

Advancements in elementary function development - Intel Portland - 10 october 2007 25

Conclusion and outlooks...

More correctly rounded functions:

High performance on average can be achieved for ◦(xy)
Worst case bounding might become feasible for xy :
a certificate that 2500 bits suffice for double seems to cost
about 500 machine-years

Attacking double-extended precision:

Worst-case search would be possible for univariate functions
We have tools for simplifying the implementation process

More numerical knowlegde inside high-level compilers

Remove the numerical burden from low-level C/Fortran
Numerical algorithms described in a high-level language
Highly investigated by Arénaire

Need: more and more computational power

Advancements in elementary function development - Intel Portland - 10 october 2007 25

Conclusion and outlooks...

More correctly rounded functions:

High performance on average can be achieved for ◦(xy)
Worst case bounding might become feasible for xy :
a certificate that 2500 bits suffice for double seems to cost
about 500 machine-years

Attacking double-extended precision:

Worst-case search would be possible for univariate functions
We have tools for simplifying the implementation process

More numerical knowlegde inside high-level compilers

Remove the numerical burden from low-level C/Fortran

Numerical algorithms described in a high-level language
Highly investigated by Arénaire

Need: more and more computational power

Advancements in elementary function development - Intel Portland - 10 october 2007 25

Conclusion and outlooks...

More correctly rounded functions:

High performance on average can be achieved for ◦(xy)
Worst case bounding might become feasible for xy :
a certificate that 2500 bits suffice for double seems to cost
about 500 machine-years

Attacking double-extended precision:

Worst-case search would be possible for univariate functions
We have tools for simplifying the implementation process

More numerical knowlegde inside high-level compilers

Remove the numerical burden from low-level C/Fortran
Numerical algorithms described in a high-level language

Highly investigated by Arénaire

Need: more and more computational power

Advancements in elementary function development - Intel Portland - 10 october 2007 25

Conclusion and outlooks...

More correctly rounded functions:

High performance on average can be achieved for ◦(xy)
Worst case bounding might become feasible for xy :
a certificate that 2500 bits suffice for double seems to cost
about 500 machine-years

Attacking double-extended precision:

Worst-case search would be possible for univariate functions
We have tools for simplifying the implementation process

More numerical knowlegde inside high-level compilers

Remove the numerical burden from low-level C/Fortran
Numerical algorithms described in a high-level language
Highly investigated by Arénaire

Need: more and more computational power

Advancements in elementary function development - Intel Portland - 10 october 2007 25

Thank you!

Thank you for your attention !

Questions ?

Advancements in elementary function development - Intel Portland - 10 october 2007 26

	Introduction
	Correct rounding of xy
	Automatic implementation of libm functions
	Conclusion

