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Correctly rounded elementary functions - crlibm

crlibm1: correctly rounded elementary function library

Elementary functions as in an usual libm:
exp
sin
cos
. . .

Bit-exact, correctly rounded results f(x)= ◦(f (x))

No important impact on average performance

Guaranteed worst case performance

Challenge: Correct rounding requires high accuracy and
complete proofs

1
http://lipforge.ens-lyon.fr/www/crlibm/
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This talk goes on...

Advancements in the correct rounding of xy

Techniques for automatic implementation of libm functions.
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Correct rounding of xy

Introduction

Correct rounding of xy

Automatic implementation of libm functions

Conclusion
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Worst-case computations

Correct rounding must overcome the Table Maker’s Dilemma

◦(f (x) · (1 + ε))
?
= ◦(f (x))

Finite domain, x is FP number, x ∈ F: worst-case ε exists

∃ε > 0 .∀ε, |ε| ≤ ε .∀x ∈ F. ◦ (f (x) · (1 + ε)) = f (x)

Univariate functions implemented in double precision:

Computation of ε actually possible (Lefèvre, Stehlé et al.)
Computation of ε is a smart exhaustive search

Bivariate function xy : F2 → F
roughly 2112 valid inputs
Worst-case search of ε currently untractable

Advancements in elementary function development - Intel Portland - 10 october 2007 5



Worst-case computations

Correct rounding must overcome the Table Maker’s Dilemma

◦(f (x) · (1 + ε))
?
= ◦(f (x))

Finite domain, x is FP number, x ∈ F: worst-case ε exists

∃ε > 0 .∀ε, |ε| ≤ ε .∀x ∈ F. ◦ (f (x) · (1 + ε)) = f (x)

Univariate functions implemented in double precision:

Computation of ε actually possible (Lefèvre, Stehlé et al.)
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Correct rounding of xn

Consider xn, x ∈ F, n ∈ N, n small

Lefèvre: traditional worst-case search is possible

Consider each n separately
Current range achieved: n ≤ 255
Worst case ε = 2−117 comparable to other double precision
functions

Correctly rounded power(x,n)=◦(xn)

Guaranteed worst-case performance for small n
Situation comparable to sin and cos:

I small values of n (resp. x for sin) are the most interesting
I Ziv’s rounding technique allows for correct rounding outside

the known domain

This research paves the road for xy
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Ziv’s rounding technique for xy

Ziv’s rounding technique:
Decrease error ε of approximation xy · (1 + ε) until rounding
becomes possible

◦(xy · (1 + ε)) = ◦(xy )

Issue:
For ensuring termination, rounding boundary cases must be
filtered out

Rounding boundary

Interval Z

Exact value xy

Approximation

Rounding boundary cases:
Complex set for xy :

RB = {xy = z |x , y ∈ F53, z ∈ F54}
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Previous approaches

Previous approaches:

Rewrite
RB = {xy = z |x , y ∈ F53, z ∈ F54}

as
x = 2E ·m, y = 2F · n, z = 2G · k

E · 2F · n = G , (mn)2
F ·n = k

Mainly test whether

(mn)2
F

= k

Cost of the test in double precision:

up to 5 square root extractions
up to 10 doubled precision multiplies
pipeline broken by many ifs
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An efficient rounding boundary test for xy – 1

Use worst-case information for rounding boundary testing

Exact case Exact case

Gaps without cases

Midpoint case

Midpoint caseNot-rounding-boundary cases

Not-rounding-boundary cases

Approximation Approximation interval Z
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An efficient rounding boundary test for xy – 2

Worst-case actually unknown for xy !

All rounding boundary cases for xy in double precision lie in a
subset

S =
{
(x , y) ∈ F2

53 | y ∈ N, 2 ≤ y ≤ 35
}

∪
{

(m, 2Fn) ∈ F2
53 | F ∈ Z, −5 ≤ F < 0, n ∈ 2N + 1,

3 ≤ n ≤ 35, m ∈ 2N + 1}

Worst-case search is tractable for (x , y) ∈ S
Testing if (x , y) ∈ S is easy: straightforward comparisons

Experimental results:

39% speed-up on average w.r.t. previous implementations
Overhead of RB detection decreased from 50% to 9%
Still more optimization: 99.1% of RB cases imply y = 3

2
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An efficient rounding boundary test for xy – 3

Details can be found at

http://prunel.ccsd.cnrs.fr/ensl-00169409/
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Function development by Arénaire members – 1

First function in crlibm

exp(x) by David Defour

correctly rounded in two approximation steps

portable C code

integer library for second step

complex, hand-written proof

duration: a Ph.D. thesis
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First function in crlibm

exp(x) by David Defour

correctly rounded in two approximation steps

portable C code

integer library for second step

complex, hand-written proof

duration: a Ph.D. thesis

Advancements in elementary function development - Intel Portland - 10 october 2007 13



Function development by Arénaire members – 2

An alternative implementation

exp(x) by myself

correctly rounded in one approximation step

usage of Itanium specific features through assembler

complex, hand-written, wrong proof

duration: a summer intern-ship at Intel Nizhny Novgorod
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Function development by Arénaire members – 3

Further functions in crlibm: atan(x), log(x)...

Maple scripts generating header files

Computation of infinite norms in Maple

Hand-written Gappa proofs

duration: about 1 month per function
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Further functions in crlibm: atan(x), log(x)...

Maple scripts generating header files

Computation of infinite norms in Maple

Hand-written Gappa proofs

duration: about 1 month per function

Advancements in elementary function development - Intel Portland - 10 october 2007 15



Function development by Arénaire members – 3
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Function development at Intel

And at Intel?

How many man-hours are accounted per libm function?
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What is the issue?

Why is the Arénaire development process so slow?

Actually, I thought we were always doing the same things...

Advancements in elementary function development - Intel Portland - 10 october 2007 17



What is the issue?
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Steps in the implementation of a function

Task: implement f in a domain [a, b] with an accuracy of k bits

Analyze the behaviour of f in [a, b]

Find an appropriate range reduction

Compute an approximation polynomial p∗

Bring the coefficients of p∗ into floating-point form: p

Implement p in floating-point arithmetic

Bound round-off errors, write a proof

Check the proof for mistakes

Bound and proof the approximation error: ‖p−f
f ‖∞

Integrate everything
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A prototype toolchain – 1

A prototype, automatic toolchain for the implementation process

Joint work by
S. Chevillard (floating-point polynomial approximation part)
Ch. Lauter (implementation and proof part)
G. Melquiond (Gappa)
and other Arénaire members

Written in
Pari/GP
C, C++
Shell scripts
an internal language: arenaireplot

Targetted to
portable C implementations
using double, double-double and triple-double arithmetic
with easy-to-handle Horner evaluation
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and other Arénaire members

Written in
Pari/GP
C, C++
Shell scripts
an internal language: arenaireplot

Targetted to
portable C implementations
using double, double-double and triple-double arithmetic
with easy-to-handle Horner evaluation

Advancements in elementary function development - Intel Portland - 10 october 2007 19



A prototype toolchain – 1

A prototype, automatic toolchain for the implementation process

Joint work by
S. Chevillard (floating-point polynomial approximation part)
Ch. Lauter (implementation and proof part)
G. Melquiond (Gappa)
and other Arénaire members
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A prototype toolchain – 2

Automatic handling of the following sub-problems:

Find an appropriate range translation

Compute an approximation polynomial p∗

Bring the coefficients of p∗ into floating-point form: p

Implement p in floating-point arithmetic

Bound round-off errors, write a proof

Check the proof for errors

Bound and proof the approximation error: ‖p−f
f ‖∞

Missing parts:

Analyze the behaviour of f in [a, b]

Find a range reduction using tables etc.

Integrate everything
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Demonstration

Task: Implement
f (x) = ecos x2+1

in the interval
I = [−2−8; 2−5]

with at least 66 bits of accuracy

Let’ try it out...
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Results on new functions

Last functions in crlibm

sinpi(x), cospi(x), tanpi(x)

correctly rounded in two approximation steps

both evaluation codes generated automatically

duration: two days
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And Intel’s customers ?

Could this be interesting for Intel’s customers?

Faster-to-market and cheaper implementations ?

Easier approach to Gappa usage ?

Better maintainablity of some code parts ?

Compilers that inline composite functions like ecos x2+1 ?
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Conclusion

Introduction

Correct rounding of xy

Automatic implementation of libm functions

Conclusion
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Conclusion and outlooks...

More correctly rounded functions:

High performance on average can be achieved for ◦(xy )
Worst case bounding might become feasible for xy :
a certificate that 2500 bits suffice for double seems to cost
about 500 machine-years

Attacking double-extended precision:

Worst-case search would be possible for univariate functions
We have tools for simplifying the implementation process

More numerical knowlegde inside high-level compilers

Remove the numerical burden from low-level C/Fortran
Numerical algorithms described in a high-level language
Highly investigated by Arénaire

Need: more and more computational power
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Need: more and more computational power

Advancements in elementary function development - Intel Portland - 10 october 2007 25



Conclusion and outlooks...

More correctly rounded functions:

High performance on average can be achieved for ◦(xy )
Worst case bounding might become feasible for xy :
a certificate that 2500 bits suffice for double seems to cost
about 500 machine-years

Attacking double-extended precision:

Worst-case search would be possible for univariate functions

We have tools for simplifying the implementation process

More numerical knowlegde inside high-level compilers

Remove the numerical burden from low-level C/Fortran
Numerical algorithms described in a high-level language
Highly investigated by Arénaire
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Thank you!

Thank you for your attention !

Questions ?
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