Advancements in (cr)libm development

Presentation at Intel - Portland

Christoph Quirin Lauter

Arénaire team Laboratoire de l'Informatique et du Parallélisme École Normale Supérieure de Lyon

Portland, 10 october 2007

Introduction

Introduction

Correct rounding of x^y

Automatic implementation of libm functions

Conclusion

Advancements in elementary function development - Intel Portland - 10 october 2007

¹http://lipforge.ens-lyon.fr/www/crlibm/

Advancements in elementary function development - Intel Portland - 10 october 2007

- Elementary functions as in an usual libm:
 - expsincos

http://lipforge.ens-lyon.fr/www/crlibm/

Advancements in elementary function development - Intel Portland - 10 october 2007

crlibm¹: correctly rounded elementary function library

- Elementary functions as in an usual libm:
 - exp
 - sin
 - COS
 - ...
- Bit-exact, correctly rounded results f(x) = o(f(x))

Advancements in elementary function development - Intel Portland - 10 october 2007

http://lipforge.ens-lyon.fr/www/crlibm/

- Elementary functions as in an usual libm:
 - exp
 - sin
 - cos
 - ...
- Bit-exact, correctly rounded results f(x) = o(f(x))
- No important impact on average performance

¹http://lipforge.ens-lyon.fr/www/crlibm/

Advancements in elementary function development - Intel Portland - 10 october 2007

- Elementary functions as in an usual libm:
 - exp
 - sin
 - cos
 - ...
- Bit-exact, correctly rounded results f(x) = o(f(x))
- No important impact on average performance
- Guaranteed worst case performance

¹http://lipforge.ens-lyon.fr/www/crlibm/

Advancements in elementary function development - Intel Portland - 10 october 2007

- Elementary functions as in an usual libm:
 - exp
 - sin
 - cos
 - ...
- Bit-exact, correctly rounded results f(x) = o(f(x))
- No important impact on average performance
- Guaranteed worst case performance
- Challenge: Correct rounding requires high accuracy and complete proofs

¹http://lipforge.ens-lyon.fr/www/crlibm/

Advancements in elementary function development - Intel Portland - 10 october 2007

- Advancements in the correct rounding of x^y
- Techniques for automatic implementation of libm functions.

Correct rounding of x^y

Introduction

Correct rounding of x^y

Automatic implementation of libm functions

Conclusion

Advancements in elementary function development - Intel Portland - 10 october 2007

• Correct rounding must overcome the Table Maker's Dilemma

$$\circ(f(x)\cdot(1+\varepsilon))\stackrel{?}{=}\circ(f(x))$$

• Correct rounding must overcome the Table Maker's Dilemma

$$\circ(f(x)\cdot(1+\varepsilon)) \stackrel{?}{=} \circ(f(x))$$

• Finite domain, x is FP number, $x \in \mathbb{F}$: worst-case $\overline{\varepsilon}$ exists

$$\exists \overline{arepsilon} > \mathbf{0} \, . \, orall arepsilon, ert arepsilon ert \leq \overline{arepsilon} \, . \, orall x \in \mathbb{F} . \circ (f(x) \cdot (1 + arepsilon)) = f(x)$$

• Correct rounding must overcome the Table Maker's Dilemma

$$\circ(f(x)\cdot(1+\varepsilon))\stackrel{?}{=}\circ(f(x))$$

• Finite domain, x is FP number, $x \in \mathbb{F}$: worst-case $\overline{\varepsilon}$ exists

$$\exists \overline{\varepsilon} > 0 \, . \, \forall \varepsilon, |\varepsilon| \leq \overline{\varepsilon} \, . \, \forall x \in \mathbb{F} \, . \, \circ (f(x) \cdot (1 + \varepsilon)) = f(x)$$

Univariate functions implemented in double precision: Computation of *ε* actually possible (Lefèvre, Stehlé et al.)

• Correct rounding must overcome the Table Maker's Dilemma

$$\circ(f(x)\cdot(1+\varepsilon))\stackrel{?}{=}\circ(f(x))$$

• Finite domain, x is FP number, $x \in \mathbb{F}$: worst-case $\overline{\varepsilon}$ exists

$$\exists \overline{arepsilon} > \mathbf{0} \, . \, orall arepsilon, ert arepsilon ert \leq \overline{arepsilon} \, . \, orall x \in \mathbb{F} . \circ (f(x) \cdot (1 + arepsilon)) = f(x)$$

• Univariate functions implemented in double precision:

- Computation of $\overline{\varepsilon}$ actually possible (Lefèvre, Stehlé et al.)
- Computation of $\overline{\varepsilon}$ is a smart exhaustive search

• Correct rounding must overcome the Table Maker's Dilemma

$$\circ(f(x)\cdot(1+\varepsilon))\stackrel{?}{=}\circ(f(x))$$

• Finite domain, x is FP number, $x \in \mathbb{F}$: worst-case $\overline{\varepsilon}$ exists

$$\exists \overline{arepsilon} > 0 \, . \, orall arepsilon, ert arepsilon ert \leq \overline{arepsilon} \, . \, orall x \in \mathbb{F} . \circ (f(x) \cdot (1 + arepsilon)) = f(x)$$

- Univariate functions implemented in double precision:
 - Computation of $\overline{\varepsilon}$ actually possible (Lefèvre, Stehlé et al.)
 - Computation of $\overline{\varepsilon}$ is a smart exhaustive search
- Bivariate function $x^y : \mathbb{F}^2 \to \mathbb{F}$

Correct rounding must overcome the Table Maker's Dilemma

$$\circ(f(x)\cdot(1+\varepsilon))\stackrel{?}{=}\circ(f(x))$$

• Finite domain, x is FP number, $x \in \mathbb{F}$: worst-case $\overline{\varepsilon}$ exists

$$\exists \overline{arepsilon} > 0 \, . \, orall arepsilon, ert arepsilon ert \leq \overline{arepsilon} \, . \, orall x \in \mathbb{F} . \circ (f(x) \cdot (1 + arepsilon)) = f(x)$$

- Univariate functions implemented in double precision:
 - Computation of $\overline{\varepsilon}$ actually possible (Lefèvre, Stehlé et al.)
 - Computation of $\overline{\varepsilon}$ is a smart exhaustive search
- Bivariate function $x^y : \mathbb{F}^2 \to \mathbb{F}$
 - roughly 2¹¹² valid inputs

• Correct rounding must overcome the Table Maker's Dilemma

$$\circ(f(x)\cdot(1+\varepsilon))\stackrel{?}{=}\circ(f(x))$$

• Finite domain, x is FP number, $x \in \mathbb{F}$: worst-case $\overline{\varepsilon}$ exists

$$\exists \overline{\varepsilon} > \mathbf{0} \, . \, \forall \varepsilon, |\varepsilon| \leq \overline{\varepsilon} \, . \, \forall x \in \mathbb{F} . \, \circ (f(x) \cdot (1 + \varepsilon)) = f(x)$$

• Univariate functions implemented in double precision:

- Computation of $\overline{\varepsilon}$ actually possible (Lefèvre, Stehlé et al.)
- Computation of $\overline{\varepsilon}$ is a smart exhaustive search
- Bivariate function $x^y : \mathbb{F}^2 \to \mathbb{F}$
 - roughly 2¹¹² valid inputs
 - Worst-case search of $\overline{\varepsilon}$ currently untractable

- Consider x^n , $x \in \mathbb{F}$, $n \in \mathbb{N}$, *n* small
- Lefèvre: traditional worst-case search is possible
 - Consider each *n* separately
 - Current range achieved: $n \leq 255$
 - Worst case $\overline{\varepsilon}=2^{-117}$ comparable to other double precision functions
- Correctly rounded power(x,n)= $\circ(x^n)$

- Consider x^n , $x \in \mathbb{F}$, $n \in \mathbb{N}$, *n* small
- Lefèvre: traditional worst-case search is possible
 - Consider each *n* separately
 - Current range achieved: $n \leq 255$
 - Worst case $\overline{\varepsilon}=2^{-117}$ comparable to other double precision functions
- Correctly rounded power(x,n)= $\circ(x^n)$
 - Guaranteed worst-case performance for small n

- Consider x^n , $x \in \mathbb{F}$, $n \in \mathbb{N}$, *n* small
- Lefèvre: traditional worst-case search is possible
 - Consider each *n* separately
 - Current range achieved: $n \leq 255$
 - Worst case $\overline{\varepsilon}=2^{-117}$ comparable to other double precision functions
- Correctly rounded power(x,n)= $\circ(x^n)$
 - Guaranteed worst-case performance for small n
 - Situation comparable to sin and cos:

- Consider x^n , $x \in \mathbb{F}$, $n \in \mathbb{N}$, *n* small
- Lefèvre: traditional worst-case search is possible
 - Consider each *n* separately
 - Current range achieved: $n \leq 255$
 - Worst case $\overline{\varepsilon}=2^{-117}$ comparable to other double precision functions
- Correctly rounded power(x,n)= $\circ(x^n)$
 - Guaranteed worst-case performance for small n
 - Situation comparable to sin and cos:
 - small values of n (resp. x for sin) are the most interesting
 - Ziv's rounding technique allows for correct rounding outside the known domain

- Consider x^n , $x \in \mathbb{F}$, $n \in \mathbb{N}$, *n* small
- Lefèvre: traditional worst-case search is possible
 - Consider each *n* separately
 - Current range achieved: $n \leq 255$
 - Worst case $\overline{\varepsilon}=2^{-117}$ comparable to other double precision functions
- Correctly rounded power(x,n)= $\circ(x^n)$
 - Guaranteed worst-case performance for small n
 - Situation comparable to sin and cos:
 - small values of n (resp. x for sin) are the most interesting
 - Ziv's rounding technique allows for correct rounding outside the known domain
- This research paves the road for x^y

Ziv's rounding technique for x^y

• Ziv's rounding technique:

Decrease error ε of approximation $x^y \cdot (1 + \varepsilon)$ until rounding becomes possible

$$\circ(x^{y}\cdot(1+\varepsilon))=\circ(x^{y})$$

Ziv's rounding technique for x^y

• Ziv's rounding technique:

Decrease error ε of approximation $x^y \cdot (1 + \varepsilon)$ until rounding becomes possible

$$\circ(x^{y}\cdot(1+\varepsilon))=\circ(x^{y})$$

• Issue:

For ensuring termination, rounding boundary cases must be filtered out

Ziv's rounding technique for x^y

• Ziv's rounding technique:

Decrease error ε of approximation $x^y \cdot (1 + \varepsilon)$ until rounding becomes possible

$$\circ(x^{y}\cdot(1+\varepsilon))=\circ(x^{y})$$

• Issue:

For ensuring termination, rounding boundary cases must be filtered out

• Rounding boundary cases: Complex set for x^y:

$$RB = \{x^y = z | x, y \in \mathbb{F}_{53}, z \in \mathbb{F}_{54}\}$$

Advancements in elementary function development - Intel Portland - 10 october 2007

Previous approaches

Previous approaches:

• Rewrite

$$RB = \{x^y = z | x, y \in \mathbb{F}_{53}, z \in \mathbb{F}_{54}\}$$

as

$$x = 2^{E} \cdot m, \quad y = 2^{F} \cdot n, \quad z = 2^{G} \cdot k$$
$$E \cdot 2^{F} \cdot n = G, \quad (m^{n})^{2^{F} \cdot n} = k$$

Previous approaches

Previous approaches:

• Rewrite

$$RB = \{x^y = z | x, y \in \mathbb{F}_{53}, z \in \mathbb{F}_{54}\}$$

as

$$x = 2^{E} \cdot m, \quad y = 2^{F} \cdot n, \quad z = 2^{G} \cdot k$$
$$E \cdot 2^{F} \cdot n = G, \quad (m^{n})^{2^{F} \cdot n} = k$$

• Mainly test whether

$$(m^n)^{2^F} = k$$

Advancements in elementary function development - Intel Portland - 10 october 2007

Previous approaches

Previous approaches:

Rewrite

$$RB = \{x^y = z | x, y \in \mathbb{F}_{53}, z \in \mathbb{F}_{54}\}$$

as

$$x = 2^{E} \cdot m, \quad y = 2^{F} \cdot n, \quad z = 2^{G} \cdot k$$
$$E \cdot 2^{F} \cdot n = G, \quad (m^{n})^{2^{F} \cdot n} = k$$

Mainly test whether

$$(m^n)^{2^F} = k$$

- Cost of the test in double precision:
 - up to 5 square root extractions
 - up to 10 doubled precision multiplies
 - pipeline broken by many ifs

Advancements in elementary function development - Intel Portland - 10 october 2007

Use worst-case information for rounding boundary testing

• Worst-case actually unknown for x^y !

- Worst-case actually unknown for x^{y} !
- All rounding boundary cases for x^y in double precision lie in a subset

$$S = \{ (x, y) \in \mathbb{F}_{53}^2 \mid y \in \mathbb{N}, \ 2 \le y \le 35 \}$$

$$\cup \{ (m, 2^F n) \in \mathbb{F}_{53}^2 \mid F \in \mathbb{Z}, \ -5 \le F < 0, \ n \in 2\mathbb{N} + 1,$$

$$3 \le n \le 35, \ m \in 2\mathbb{N} + 1 \}$$

- Worst-case actually unknown for x^{y} !
- All rounding boundary cases for x^y in double precision lie in a subset

$$S = \{ (x, y) \in \mathbb{F}_{53}^2 \mid y \in \mathbb{N}, \ 2 \le y \le 35 \}$$

$$\cup \quad \{ (m, 2^F n) \in \mathbb{F}_{53}^2 \mid F \in \mathbb{Z}, \ -5 \le F < 0, \ n \in 2\mathbb{N} + 1,$$

$$3 \le n \le 35, \ m \in 2\mathbb{N} + 1 \}$$

• Worst-case search is tractable for $(x, y) \in \mathbb{S}$

- Worst-case actually unknown for x^{y} !
- All rounding boundary cases for x^y in double precision lie in a subset

$$S = \{ (x, y) \in \mathbb{F}_{53}^2 \mid y \in \mathbb{N}, \ 2 \le y \le 35 \}$$

$$\cup \quad \{ (m, 2^F n) \in \mathbb{F}_{53}^2 \mid F \in \mathbb{Z}, \ -5 \le F < 0, \ n \in 2\mathbb{N} + 1,$$

$$3 \le n \le 35, \ m \in 2\mathbb{N} + 1 \}$$

- Worst-case search is tractable for $(x, y) \in \mathbb{S}$
- Testing if $(x, y) \in \mathbb{S}$ is easy: straightforward comparisons

- Worst-case actually unknown for x^{y} !
- All rounding boundary cases for x^y in double precision lie in a subset

$$\begin{split} \mathbb{S} &= \{(x,y) \in \mathbb{F}_{53}^2 \mid y \in \mathbb{N}, \ 2 \le y \le 35\} \\ &\cup \ \left\{(m,2^F n) \in \mathbb{F}_{53}^2 \mid F \in \mathbb{Z}, \ -5 \le F < 0, \ n \in 2\mathbb{N} + 1, \\ &3 \le n \le 35, \ m \in 2\mathbb{N} + 1\} \end{split}$$

- Worst-case search is tractable for $(x, y) \in \mathbb{S}$
- Testing if $(x, y) \in \mathbb{S}$ is easy: straightforward comparisons
- Experimental results:

- Worst-case actually unknown for x^y !
- All rounding boundary cases for x^y in double precision lie in a subset

$$S = \{ (x, y) \in \mathbb{F}_{53}^2 \mid y \in \mathbb{N}, \ 2 \le y \le 35 \}$$

$$\cup \quad \left\{ (m, 2^F n) \in \mathbb{F}_{53}^2 \mid F \in \mathbb{Z}, \ -5 \le F < 0, \ n \in 2\mathbb{N} + 1, \\ 3 \le n \le 35, \ m \in 2\mathbb{N} + 1 \} \right\}$$

- Worst-case search is tractable for $(x, y) \in \mathbb{S}$
- Testing if $(x, y) \in \mathbb{S}$ is easy: straightforward comparisons
- Experimental results:
 - 39% speed-up on average w.r.t. previous implementations

- Worst-case actually unknown for x^y !
- All rounding boundary cases for x^y in double precision lie in a subset

$$S = \{ (x, y) \in \mathbb{F}_{53}^2 \mid y \in \mathbb{N}, \ 2 \le y \le 35 \}$$

$$\cup \quad \left\{ (m, 2^F n) \in \mathbb{F}_{53}^2 \mid F \in \mathbb{Z}, \ -5 \le F < 0, \ n \in 2\mathbb{N} + 1, \\ 3 \le n \le 35, \ m \in 2\mathbb{N} + 1 \} \right\}$$

- Worst-case search is tractable for $(x, y) \in \mathbb{S}$
- Testing if $(x, y) \in \mathbb{S}$ is easy: straightforward comparisons
- Experimental results:
 - 39% speed-up on average w.r.t. previous implementations
 - Overhead of RB detection decreased from 50% to 9%
An efficient rounding boundary test for $x^y - 2$

- Worst-case actually unknown for x^{y} !
- All rounding boundary cases for x^y in double precision lie in a subset

$$S = \{ (x, y) \in \mathbb{F}_{53}^2 \mid y \in \mathbb{N}, \ 2 \le y \le 35 \}$$

$$\cup \quad \{ (m, 2^F n) \in \mathbb{F}_{53}^2 \mid F \in \mathbb{Z}, \ -5 \le F < 0, \ n \in 2\mathbb{N} + 1,$$

$$3 \le n \le 35, \ m \in 2\mathbb{N} + 1 \}$$

- Worst-case search is tractable for $(x, y) \in \mathbb{S}$
- Testing if $(x, y) \in \mathbb{S}$ is easy: straightforward comparisons
- Experimental results:
 - 39% speed-up on average w.r.t. previous implementations
 - Overhead of RB detection decreased from 50% to 9%
 - Still more optimization: 99.1% of RB cases imply $y = \frac{3}{2}$

An efficient rounding boundary test for $x^y - 3$

Details can be found at

http://prunel.ccsd.cnrs.fr/ensl-00169409/

Advancements in elementary function development - Intel Portland - 10 october 2007

Automatic implementation of libm functions

Introduction

Correct rounding of x^y

Automatic implementation of libm functions

Conclusion

Advancements in elementary function development - Intel Portland - 10 october 2007

Function development by Arénaire members – 1

• exp(x) by David Defour

- exp(x) by David Defour
- correctly rounded in two approximation steps

- exp(x) by David Defour
- correctly rounded in two approximation steps
- portable C code
- integer library for second step

- exp(x) by David Defour
- correctly rounded in two approximation steps
- portable C code
- integer library for second step
- complex, hand-written proof

- exp(x) by David Defour
- correctly rounded in two approximation steps
- portable C code
- integer library for second step
- complex, hand-written proof
- duration: a Ph.D. thesis

• exp(x) by myself

- exp(x) by myself
- correctly rounded in one approximation step

- exp(x) by myself
- correctly rounded in one approximation step
- usage of Itanium specific features through assembler

- exp(x) by myself
- correctly rounded in one approximation step
- usage of Itanium specific features through assembler
- complex, hand-written, wrong proof

- exp(x) by myself
- correctly rounded in one approximation step
- usage of Itanium specific features through assembler
- complex, hand-written, wrong proof
- duration: a summer intern-ship at Intel Nizhny Novgorod

• Maple scripts generating header files

- Maple scripts generating header files
- Computation of infinite norms in Maple

- Maple scripts generating header files
- Computation of infinite norms in Maple
- Hand-written Gappa proofs

- Maple scripts generating header files
- Computation of infinite norms in Maple
- Hand-written Gappa proofs
- duration: about 1 month per function

And at Intel?

How many man-hours are accounted per libm function?

What is the issue?

Why is the Arénaire development process so slow?

Why is the Arénaire development process so slow?

Actually, I thought we were always doing the same things...

Task: implement f in a domain [a, b] with an accuracy of k bits

• Analyze the behaviour of f in [a, b]

- Analyze the behaviour of f in [a, b]
- Find an appropriate range reduction

- Analyze the behaviour of f in [a, b]
- Find an appropriate range reduction
- Compute an approximation polynomial p^*

- Analyze the behaviour of f in [a, b]
- Find an appropriate range reduction
- Compute an approximation polynomial p^*
- Bring the coefficients of p^* into floating-point form: p

- Analyze the behaviour of f in [a, b]
- Find an appropriate range reduction
- Compute an approximation polynomial p^*
- Bring the coefficients of p^* into floating-point form: p
- Implement *p* in floating-point arithmetic

- Analyze the behaviour of f in [a, b]
- Find an appropriate range reduction
- Compute an approximation polynomial p^*
- Bring the coefficients of p^* into floating-point form: p
- Implement *p* in floating-point arithmetic
- Bound round-off errors, write a proof

- Analyze the behaviour of f in [a, b]
- Find an appropriate range reduction
- Compute an approximation polynomial p^*
- Bring the coefficients of p^* into floating-point form: p
- Implement *p* in floating-point arithmetic
- Bound round-off errors, write a proof
- Check the proof for mistakes

- Analyze the behaviour of f in [a, b]
- Find an appropriate range reduction
- Compute an approximation polynomial p^*
- Bring the coefficients of p^* into floating-point form: p
- Implement *p* in floating-point arithmetic
- Bound round-off errors, write a proof
- Check the proof for mistakes
- Bound and proof the approximation error: $\|\frac{p-f}{f}\|_{\infty}$

- Analyze the behaviour of f in [a, b]
- Find an appropriate range reduction
- Compute an approximation polynomial p^*
- Bring the coefficients of p^* into floating-point form: p
- Implement p in floating-point arithmetic
- Bound round-off errors, write a proof
- Check the proof for mistakes
- Bound and proof the approximation error: $\|\frac{p-f}{f}\|_{\infty}$
- Integrate everything

A prototype toolchain – 1

A prototype, automatic toolchain for the implementation process

A prototype toolchain – 1

A prototype, automatic toolchain for the implementation process

- Joint work by
 - S. Chevillard (floating-point polynomial approximation part)
 - Ch. Lauter (implementation and proof part)
 - G. Melquiond (Gappa)
 - and other Arénaire members

A prototype toolchain – 1

A prototype, automatic toolchain for the implementation process

- Joint work by
 - S. Chevillard (floating-point polynomial approximation part)
 - Ch. Lauter (implementation and proof part)
 - G. Melquiond (Gappa)
 - and other Arénaire members
- Written in
 - Pari/GP
 - C, C++
 - Shell scripts
 - an internal language: arenaireplot
A prototype, automatic toolchain for the implementation process

- Joint work by
 - S. Chevillard (floating-point polynomial approximation part)
 - Ch. Lauter (implementation and proof part)
 - G. Melquiond (Gappa)
 - and other Arénaire members
- Written in
 - Pari/GP
 - C, C++
 - Shell scripts
 - an internal language: arenaireplot

• Targetted to

- portable C implementations
- using double, double-double and triple-double arithmetic
- with easy-to-handle Horner evaluation

Automatic handling of the following sub-problems:

• Find an appropriate range translation

- Find an appropriate range translation
- Compute an approximation polynomial p^*

- Find an appropriate range translation
- Compute an approximation polynomial *p**
- Bring the coefficients of p^* into floating-point form: p

- Find an appropriate range translation
- Compute an approximation polynomial *p**
- Bring the coefficients of p^* into floating-point form: p
- Implement p in floating-point arithmetic

- Find an appropriate range translation
- Compute an approximation polynomial *p**
- Bring the coefficients of p^* into floating-point form: p
- Implement p in floating-point arithmetic
- Bound round-off errors, write a proof

- Find an appropriate range translation
- Compute an approximation polynomial *p**
- Bring the coefficients of p^* into floating-point form: p
- Implement p in floating-point arithmetic
- Bound round-off errors, write a proof
- Check the proof for errors

- Find an appropriate range translation
- Compute an approximation polynomial *p**
- Bring the coefficients of p^* into floating-point form: p
- Implement p in floating-point arithmetic
- Bound round-off errors, write a proof
- Check the proof for errors
- Bound and proof the approximation error: $\|\frac{p-f}{f}\|_{\infty}$

Automatic handling of the following sub-problems:

- Find an appropriate range translation
- Compute an approximation polynomial *p**
- Bring the coefficients of p^* into floating-point form: p
- Implement p in floating-point arithmetic
- Bound round-off errors, write a proof
- Check the proof for errors
- Bound and proof the approximation error: $\|\frac{p-f}{f}\|_{\infty}$

Missing parts:

• Analyze the behaviour of f in [a, b]

Automatic handling of the following sub-problems:

- Find an appropriate range translation
- Compute an approximation polynomial *p**
- Bring the coefficients of p^* into floating-point form: p
- Implement p in floating-point arithmetic
- Bound round-off errors, write a proof
- Check the proof for errors
- Bound and proof the approximation error: $\|\frac{p-f}{f}\|_{\infty}$

Missing parts:

- Analyze the behaviour of f in [a, b]
- Find a range reduction using tables etc.

Automatic handling of the following sub-problems:

- Find an appropriate range translation
- Compute an approximation polynomial *p**
- Bring the coefficients of p^* into floating-point form: p
- Implement p in floating-point arithmetic
- Bound round-off errors, write a proof
- Check the proof for errors
- Bound and proof the approximation error: $\|\frac{p-f}{f}\|_{\infty}$

Missing parts:

- Analyze the behaviour of f in [a, b]
- Find a range reduction using tables etc.
- Integrate everything

Demonstration

Task: Implement

$$f(x) = e^{\cos x^2 + 1}$$

in the interval

$$I = [-2^{-8}; 2^{-5}]$$

ł

with at least 66 bits of accuracy

Demonstration

Task: Implement

$$f(x) = e^{\cos x^2 + 1}$$

in the interval

$$I = [-2^{-8}; 2^{-5}]$$

ł

with at least 66 bits of accuracy

Let' try it out ...

Advancements in elementary function development - Intel Portland - 10 october 2007

Results on new functions

• sinpi(x), cospi(x), tanpi(x)

- sinpi(x), cospi(x), tanpi(x)
- correctly rounded in two approximation steps

- sinpi(x), cospi(x), tanpi(x)
- correctly rounded in two approximation steps
- both evaluation codes generated automatically

- sinpi(x), cospi(x), tanpi(x)
- correctly rounded in two approximation steps
- both evaluation codes generated automatically
- duration: two days

• Faster-to-market and cheaper implementations ?

- Faster-to-market and cheaper implementations ?
- Easier approach to Gappa usage ?

- Faster-to-market and cheaper implementations ?
- Easier approach to Gappa usage ?
- Better maintainablity of some code parts ?

- Faster-to-market and cheaper implementations ?
- Easier approach to Gappa usage ?
- Better maintainablity of some code parts ?
- Compilers that inline composite functions like $e^{\cos x^2 + 1}$?

Conclusion

Introduction

Correct rounding of x^y

Automatic implementation of libm functions

Conclusion

Advancements in elementary function development - Intel Portland - 10 october 2007

• More correctly rounded functions:

- More correctly rounded functions:
 - High performance on average can be achieved for $\circ(x^y)$

- More correctly rounded functions:
 - High performance on average can be achieved for $\circ(x^y)$
 - Worst case bounding might become feasible for x^y:
 a certificate that 2500 bits suffice for double seems to cost about 500 machine-years

- More correctly rounded functions:
 - High performance on average can be achieved for $\circ(x^y)$
 - Worst case bounding might become feasible for x^y:
 a certificate that 2500 bits suffice for double seems to cost about 500 machine-years
- Attacking double-extended precision:

- More correctly rounded functions:
 - High performance on average can be achieved for $\circ(x^y)$
 - Worst case bounding might become feasible for x^y:
 a certificate that 2500 bits suffice for double seems to cost about 500 machine-years
- Attacking double-extended precision:
 - Worst-case search would be possible for univariate functions

- More correctly rounded functions:
 - High performance on average can be achieved for $\circ(x^y)$
 - Worst case bounding might become feasible for x^y:
 a certificate that 2500 bits suffice for double seems to cost about 500 machine-years
- Attacking double-extended precision:
 - Worst-case search would be possible for univariate functions
 - We have tools for simplifying the implementation process

- More correctly rounded functions:
 - High performance on average can be achieved for $\circ(x^y)$
 - Worst case bounding might become feasible for x^y:
 a certificate that 2500 bits suffice for double seems to cost about 500 machine-years
- Attacking double-extended precision:
 - Worst-case search would be possible for univariate functions
 - We have tools for simplifying the implementation process
- More numerical knowlegde inside high-level compilers

- More correctly rounded functions:
 - High performance on average can be achieved for $\circ(x^y)$
 - Worst case bounding might become feasible for x^y:
 a certificate that 2500 bits suffice for double seems to cost about 500 machine-years
- Attacking double-extended precision:
 - Worst-case search would be possible for univariate functions
 - We have tools for simplifying the implementation process
- More numerical knowlegde inside high-level compilers
 - Remove the numerical burden from low-level C/Fortran

- More correctly rounded functions:
 - High performance on average can be achieved for $\circ(x^y)$
 - Worst case bounding might become feasible for x^y:
 a certificate that 2500 bits suffice for double seems to cost about 500 machine-years
- Attacking double-extended precision:
 - Worst-case search would be possible for univariate functions
 - We have tools for simplifying the implementation process
- More numerical knowlegde inside high-level compilers
 - Remove the numerical burden from low-level C/Fortran
 - Numerical algorithms described in a high-level language

- More correctly rounded functions:
 - High performance on average can be achieved for $\circ(x^y)$
 - Worst case bounding might become feasible for x^y:
 a certificate that 2500 bits suffice for double seems to cost about 500 machine-years
- Attacking double-extended precision:
 - Worst-case search would be possible for univariate functions
 - We have tools for simplifying the implementation process
- More numerical knowlegde inside high-level compilers
 - Remove the numerical burden from low-level C/Fortran
 - Numerical algorithms described in a high-level language
 - Highly investigated by Arénaire

• Need: more and more computational power

Thank you!

Thank you for your attention !

Questions ?

Advancements in elementary function development - Intel Portland - 10 october 2007