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Motivation: Implementing Mathematical Functions

Our work: Designing methods and tools to help with the
floating-point implementation of mathematical functions.

Features:

correct rounding (deterministic, portable, suitable for proofs),

as fast as crude implementations,

high confidence in the correctness.
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Implementing a Mathematical Function

Peculiarities of such implementations:

One needs to bound the maximum error
(and not the average error, as is done for signal processing).

Functions are straight-line codes,
so as to avoid costly control flow.

Accuracy and precision are fixed
(no multi-precision algorithms à la MPFR).

Algorithm and proof are devised at the same time.
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Tools: Sollya and Gappa

Environment for high-confidence code developments

Sollya: the mathematical side of the process.

Finding approximation polynomials.
Bounding truncation and quantization errors.

Gappa: the floating-point side of the process.

Bounding round-off and global errors.
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Running Example

Example (Exponential)

A floating-point implementation of the exponential function
with a relative accuracy of 2−42 (but no correct rounding).

Constraints:

a C function working on binary64 numbers,

for any finite input x and any finite output y ,∣∣∣∣ y

exp x
− 1

∣∣∣∣ ≤ 2−42,

efficiency!
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Vocabulary

Definition (Precision and accuracy)

Precision: number format used for input, output, and
computations.

Accuracy: quality of the results.
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Vocabulary

Definition (Validation and verification)

How to ensure that a program/device is fit for a purpose?

Validation: black box, experimental process.

Verification: abstraction, mathematical process.

Definition (Certification and qualification)

Certification: assessing software safety according to
regulations.

Qualification: making tools suitable for use during
certification.
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Basic Concepts: Floating-Point Arithmetic

Every operation shall be performed as if it first produced
an intermediate result correct to infinite precision and
with unbounded range, and then rounded that result.

– IEEE-754 standard for FP arithmetic

Concise specification, suitable for program verification.

It is all about real numbers:
◦(x) is the real value of the floating-point number the closest
to the real number x , given a format and a rounding mode.
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Basic Concepts: Interval Arithmetic

Interval evaluations can serve as proofs of bounds,
when they satisfy the containment property:

x ∈ Ix ∧ y ∈ Iy =⇒ x � y ∈ Iz if Ix � Iy ⊆ Iz

for � ∈ {+,−,×,÷}. Also for unary functions:
√
·, sin, and so on.

Arithmetic operations on intervals:

[a, b] + [c , d ] = [a + c , b + d ],

[a, b]− [c , d ] = [a− d , b − c],

[a, b]× [c , d ] = [min(ac , ad , bc, bd),max(ac, ad , bc, bd)],

[a, b]÷ [c , d ] = [a, b]× [c , d ]−1

with [c , d ]−1 = [1/d , 1/c] if 0 6∈ [c, d ].
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Outline

2 Implementation theory
Functions on computers
Ingredients for an implementation
Implementation schemes
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Elementary functions implemented on Computers

x

y

∀x ∈ Fk ,

x
f7−→ f (x)

◦k7−→ ◦k(f (x))
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Disclaimer for this section

No multi-precision algorithms

The input/output precisions are supposed to be known
E.g. exp gets implemented on binary64 with 53 bits
Implementation of exp with k bits of output precision is
harder.

Refer to the MPFR library for that.

No techniques especially developed for hardware

The different libms are implemented in software
Some processors do integrated specialized hardware

but it is less and less used for common libm usecases.
If it is used, it is on Intel/AMD, where it is microcode, i.e.
software.

There are some specialized techniques for hardware, such as
CORDIC.
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Polynomial approximation

How to implement f = exp. . .

. . . on a small domain I = [−1; 1], to start with?

 0

 0.5

 1

 1.5

 2

 2.5

 3

-1 -0.5  0  0.5  1

Solution: replace f by an approximation polynomial p
Classes of polynomials:

Weierstraß tells us that the techniques always work
Taylor expansion as a first idea
Polynomials that minimize the maximum error on the domain.
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Why polynomials?

Why polynomials and no other approximants?

Why no (truncated) continued fractions?
Why no approximations with other base functions?

A (almost) purely technological answer

Fast hardware support for +, × and FMA
Less performance for division (19 cycles on i5/i7)
The ability to explicitly compute the error for + and ×. . .
. . . but not for sin and log

This answer is not categorical.

Some functions are hard to approximate with polynomials: asin
We are doing software; things might be different in hardware.
There is a rich tool-chain for polynomials and almost nothing
for the rest.
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Reasons why argument reduction is needed

Functions f need to be implemented on the whole FP domain

For binary64, f = exp is defined on I = [−744.5; 709]

Polynomial approximation alone is not enough:

-40

-20

 0

 20

 40

 60

 80

 100

 120

 140

 160

-4 -2  0  2  4

When the domain is large, the error explodes for a given
degree

or: a huge degree is needed to compensate.
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Argument reduction

Argument reduction reduces the range of the function
Use of algebraic properties of the function

Periodicity: sin
Autosimilarity: exp
Symmetry: asin

Use of the semi-logarithmic character of the FP formats

From space, convertToInteger and exp are kind of alike.

Fallback: splitting of the domain into subdomains.

Example for exp:

ex = 2
x

log 2 = 2

⌊
x

log 2

⌉
· 2

x
log 2
−
⌊

x
log 2

⌉
= 2E · ex−E log 2 = 2E · er
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Tabulation

Periodicity and the semi-logarithmic FP are not enough

Periodicity: a whole period is to be covered by the polynomial
Semi-logarithmic character: a whole binade 1 ≤ m < 2

Idea: use a table

precompute the function at discrete points in a table
and have the polynomial cover the gaps between these points.

Issue: function needs to be autosimilar so that it stays the
same between all discrete points.
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Tabulation - Example

Example for exp:

ex = 2
x

log 2

= 2
2−λ

⌊
2λ x

log 2

⌉
· 2

x
log 2
−2−λ

⌊
2λ x

log 2

⌉
= 2E · 22

−λ i · ex−k 2−λ log 2

= 2E · 22
−λ i · er

where

k =

⌊
2λ

x

log 2

⌉
,E =

⌊
2−λ k

⌋
, i = k − 2λ E , r = x − k 2−λ log 2.

Here,

t : i 7→ 22
−λ i is t : N→ R, hence a table,

where the index i is bounded by 0 ≤ i ≤ 2λ − 1 and

r , the reduced argument, is in a small domain |r | ≤ 1
2 2−λ 1

log 2 .
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Reconstruction

Argument reduction “cuts” f into several other functions

the function on the reduced domain
the functions i 7→ t[i ] computed by the tables
the basic operations used in the reduction itself.

The reconstruction phase recovers the original function f .

Reconstruction code is often easier to write than argument
reduction code.

Bit-fiddling for argument reduction
Pure basic FP operations (adds and muls) for reconstruction.

However, reconstruction does yield to some error due to
roundings.
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Algorithm scheme for a function’s implementation

Table

Reconstruction

x

f (x)

Argument reduction

Reduced argument r Tabulation index i

Polynomial
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A toy exponential
// A ve r y c rude ” toy ” imp l ementa t i on o f exp ( x )
//
// About 42 b i t s o f a ccu racy . No checks f o r NaN, I n f what soeve r .
//
double Exp ( double x ) {

double z , n , t , r , P , t b l , y ;
u i n t 3 2 t E , idx , N;
doub l eCa s t e r sh i f t edN , twoE ;

// Argument r e d u c t i o n
z = x ∗ TWO 4 RCP LN 2 ; // z = x ∗ 2ˆ4 ∗ 1/ l n (2 )
s h i f t e dN . d = z + TWO 52 P 51 ; // s h i f t e dN . d = n e a r e s t i n t ( z ) + 2ˆ52 + 2ˆ51
n = sh i f t e dN . d − TWO 52 P 51 ; // n = n e a r e s t i n t ( z ) as doub l e
N = sh i f t e dN . i [LO ] ; // N = n e a r e s t i n t ( z ) as i n t e g e r
E = N >> 4 ; // E = f l o o r (2ˆ−4 ∗ N)
i d x = N & 0 x0 f ; // i d x = N − E ∗ 2ˆ4
t = n ∗ TWO M 4 LN 2 ; // t = n ∗ 2ˆ−4 ∗ l n (2 )
r = x − t ; // r = x − t

// Po l ynomia l app rox imat i on p ( r ) app rox imate s exp ( r )
P = c0 + r ∗ ( c1 + r ∗ ( c2 + r ∗ ( c3 + r ∗ ( c4 + r ∗ c5 ) ) ) ) ;

// Table a c c e s s
t b l = t a b l e [ i d x ] ; // t b l = 2ˆ(2ˆ−4 ∗ i d x )

// Re con s t r u c t i o n
twoE . i [ HI ] = (E + 1023) << 20 ;
twoE . i [LO] = 0 ; // twoE . d = 2ˆE
y = twoE . d ∗ ( t b l ∗ P) ; // y = 2ˆE ∗ t b l ∗ P

r e t u r n y ;
}

Christoph Lauter, Guillaume Melquiond Designing a Correct Numerical Algorithm



Intro Implem Errors Sollya Gappa Norm Conc Functions Ingredients Schemes

Exceptional cases

The function f : R→ R to implement lives in a FP format

Floating-point formats have special values:

Infinities ±∞
Not-A-Numbers (NaNs), possibly with “payload”
Zeros ±0, with some semantics behind the sign
Subnormal numbers

An implementation of f must handle these special values
in input, branching out before argument reduction

NaNs give NaNs with the same payload,
Infinities are handled with some limits semantics,
Subnormals must be renormalized as appropriate.

in output

Underflows and overflows where appropriate,
Domain errors yield NaNs.
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Outline

3 Error analysis
Error kinds and propagation
Approximation
Evaluation
Argument reduction, result reconstruction
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Error Kinds and Propagation

Definition (Absolute and relative errors)

Let x̃ be a computed value and x an expected value.

Absolute error: δx = x̃ − x .

Relative error: εx = (x̃ − x)/x .

(Gappa’s definitions)

Relative error rules over floating-point arithmetic.

It needs careful analysis in presence of addition:

(x̃ + ỹ)− (x + y)

x + y
=
δx + δy
x + y

when x + y → 0.
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Error Kinds

Definition

Model error: distance between the physical phenomenon and
its mathematical model.

Input error: inaccuracy of sensors.

Truncation error: due to ignoring terms in formulas.

Quantization error: representation of mathematical constants
as floating-point numbers.

Round-off error: caused by finite-precision computations.

Arbitrary classification.
Better look at them from a tool perspective.
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Error Kinds

Polynomial ResultArgument

quantization error
truncation error

round-off error round-off error round-off error

relative error
computed value

floating-point values
approximation errors (Sollya)
round-off errors and
propagation (Gappa)

quantization error

reduction evaluation reconstruction
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Polynomial Approximation

Example (Truncation error for exponential)

Input domain: |r | ≤ 195103586506733 · 2−53 ' 2−5.5.
Expected result: er .
Algorithm with infinitely-precise computations: P̂(r) =

∑
i≤5 ci r

i .

Goal: bound P̂(r)/er − 1.

Specificities:

r 7→ P̂(r)/er is a C∞ function.
All the methods from real analysis are available.

P̂(r) and er are close (by design),
so be wary of tool results.

Dedicated tool: Sollya.
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Relative Truncation Error
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Polynomial Evaluation

Example (Round-off error for exponential)

Input domain: |r | ≤ 195103586506733 · 2−53 ' 2−5.5.
Algorithm with infinitely-precise computations: P̂(r) =

∑
i≤5 ci r

i .
Computed value: P(r) = ◦(c0 + ◦(r × ◦(c1 + . . .))).
Goal: bound P(r)/P̂(r)− 1.

Input error: |r − r̂ | ≤ 184646756448821703 · 2−100 ' 2−42.6.
Truncation error: |P̂(r)/er − 1| ≤ 30567 . . . 0435 · 2−129 ' 2−47.6.
Goal: bound P(r)/e r̂ − 1.

Specificities:

r 7→ P(r)/P̂(r) is not even continuous.

Dedicated tool: Gappa.

Note: the truncation error comes from Sollya.
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Relative Round-Off Error
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Relative Round-Off and Truncation Error
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Argument Reduction

Where does the bound |r − r̂ | ≤ 2−42.6 come from?

Example (Input error for polynomial evaluation of exponential)

Input domain: |x | ≤ 800.
Reduction factor: n = b◦(x · TWO 4 RCP LN 2)e.
Computed value: r = ◦(x − ◦(n × TWO M 4 LN 2)).
Expected value: r̂ = x − n × ln(2)/16.
Goal: bound r − r̂ .

Specificities:

r − r̂ is not continuous with respect to x ;
the last round-off error vanishes.

Dedicated tool: Gappa.

Note: the quantization error comes from Sollya.
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Result Reconstruction

Example (Final error for exponential)

Computed value: y = ◦(2E × ◦(tbl × P(r))).
Expected value: ŷ = ex = 2E × (2idx/16 × e r̂ ).
Goal: bound y/ŷ − 1.

Dedicated tool: Gappa.

Note: the quantization error on 2idx/16 comes from Sollya.

Disclaimer: we have ignored the case
where multiplying by 2E causes an underflow.
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Relative Global Error
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4 Sollya and polynomial approximations
Polynomial approximation theory
First ideas for polynomial approximation
Interpolation polynomials
Choosing the right interpolation points
Remez polynomials
Polynomial approximation with Sollya
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Specifying polynomial approximation

Let f : R→ R be a function. . .

. . . on a small domain I = [a; b] ⊂ R.

Also fix a target error ε to be satisfied.

We need to compute a polynomial p of minimal degree n such
that the error p

f − 1 stays bounded by ε (in magnitude).

Example:

Function: f = exp

Domain: I =
[
−1

2 ; 1
2

]
Target error: ε = 2−5 (5 correct bits)

p(x) = 1 + x + 1
2 x2 n = 2

‖pf − 1‖I∞ ≈ 3.05 · 10−2 < 2−5
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Specifying polynomial approximation - cont’d

Put differently, we need to

choose a degree n that seems to be sufficient, to
compute the coefficients ci of a polynomial

p(x) =
n∑

i=0

ci x i

to consider the error p
f − 1 yielded by p

and to start over, increasing n, if it is too large.

But how to compute the coefficients ci of the polynomial p?
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Taylor polynomials

First idea:

Let us take x0 ∈ I
f (x0) approximates f (x) over I
f (x0) + (x − x0) · f ′(x0) is better
f (x0) + (x − x0) · f ′(x0) + 1

2 · (x − x0)2 · f ′′(x0)
works even better

This is the idea behind a Taylor expansion at x0:

f (x) =
n∑

i=0

f (i)(x0)

i !
· (x − x0)i︸ ︷︷ ︸

=:p(x)

+
f (n+1)(ξ)

(n + 1)!
· (x − x0)n+1︸ ︷︷ ︸

Lagrange rest resp. error

The differential equations defining our functions are simple:

Taylor expansions are known for the functions in a libm
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Issues with Taylor polynomials

Error of a Taylor polynomial p of degree 5 with respect to f = exp:
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 0

-0.4 -0.2  0  0.2  0.4

The Taylor polynomial approximates the function best at the
expansion point x0: the error vanishes at x0
The error explodes at the extremities of I
⇒ p should approximate f well over the whole domain I ,
or, at least, the error should vanish several times on I
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Interpolation polynomials

A polynomial of degree n

has n + 1 coefficients
i.e. n + 1 degrees of freedom
It is defined by n + 1 points (xj , p(xj))

For the error p(x)− f (x) to vanish at xj ,
it suffices to have p(xj) = f (xj).

The polynomial p interpolates the function f at xj

A interpolation polynomial for f is defined by n + 1 values xj
There is one value per degree of freedom.
The ordinates f (xj) are trivial for f and xj .
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Example of an interpolation polynomial

Error of p, interpolation polynomial of f = exp:
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The error vanishes at the interpolation points xj
By choosing the interpolation points, we can constrain the
error to oscillate
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Computing an interpolation polynomial

How can an interpolation polynomial be computed?

We have p(xj) =
n∑

i=0
ci x i

j = f (xj) for n + 1 points xj

Put differently, we have

1 x1 x2
1 · · · · · · xn

1

1 x2
. . .

...
...

... x i
j

...
...

...
. . .

...
1 xn+1 · · · · · · · · · xn

n+1


︸ ︷︷ ︸

=:A

·


c0
c1
...
...

cn


︸ ︷︷ ︸

=:~p

=


f (x1)
f (x2)

...

...
f (xn+1)


︸ ︷︷ ︸

=:~f

We know that Vandermonde matrix A and the r.h.s. ~f .
⇒ solving that systems yields p

Side note: special resolution algorithms for Vandermonde
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A chicken and egg problem

We know that right-hand side ~f .

So we can compute f (xj) for all xj .

WTF? We are implementing a procedure
to compute f !

There is a chicken and egg problem:

We first need code to evaluate the f (xj)
In a second step, we can compute interpolation polynomials
to put them into code that computes f

Practically:

We write multi-precision procedures for the functions
Those are based on inefficient Taylor polynomials in any case.
Then, we use these code in order develop a libm
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Which interpolation points to choose?

The choice made for xj has an influence on the error:
Let p be a polynomial interpolating f at the xj . Hence we
have

f (x) = p(x) +
1

(n + 1)!
f (n+1)(ξ)

n∏
j=0

(x − xj)

Equidistant points are not optimal

Chebyshev tried to minimize the error

Remez has finally given an iterative algorithm

to compute the polynomial that is minimal w.r.t. the maximal
error
The algorithm “just” chooses the right interpolation points
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Equidistant points

Error of p interpolating f = exp at equidistant points:
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-9e-06

-8e-06
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-1e-06

 0

 1e-06

-0.4 -0.2  0  0.2  0.4

This is better than Taylor: the error is 2.5 times less

The error starts to oscillate

The error still explodes at the extremities
⇒ we should try to put more points near the extremities
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Chebyshev interpolation nodes

The error is to be minimized for the maximum norm
‖ ‖∞:

f (x)− p(x) =
1

(n + 1)!
f (n+1)(ξ)

n∏
j=0

(x − xj)

P. L. Chebyshev: try to minimize∥∥∥∥∥∥
n∏

j=0

(x − xj)

∥∥∥∥∥∥
∞

Particular points for which this is the case over I = [a; b]:

xj = a +
b − a

2
·
(

cos

(
2j − 1

2 (n + 1)

)
+ 1

)
These are the Chebyshev interpolation nodes.
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Chebyshev interpolation nodes - example

Error of p interpolating f = exp at the Chebyshev nodes:
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This is 10× better than for equidistant points!

It is not yet optimal: see plot

There are functions where this sub-optimality is huge.
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Remez polynomials

Theorem (Chebyshev/ La Vallée-Poussin):
The approximation polynomial is optimal iff all
the extrema are the same height.

E. Ya. Remez:
Directly interpolate f (x) + (−1)j · ε
where ε is the height of the sought extrema.
While the extrema are not at the same height, exchange the
interpolation points with the points where the real extrema are
located.

This is the Remez algorithm
It converges towards the polynomial minimal undermaximum
norm
That is why it is also called minimax algorithm
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Example: Remez polynomial

Erreur of Remez polynomial p of degree 5 w.r.t f = exp:
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The error is just a little smaller than for Chebyshev

All the extrema are now at the same height
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Yet another issue → fpminimax

Taylor, Chebyshev, Remez: polynomials with real coefficients

p(x) =
n∑

i=0

ci x i ci ∈ R

On computers, there are only FP numbers to store the ci .

When rounding coefficient by coefficient, c̃i = ◦ci ,
we destroy all the optimization work done by the Remez
algorithm.

The oscillations disappear.
The error explodes.

Need to compute approximation polynomials with FP
coefficients

p(x) =
n∑

i=0

ci x i ci ∈ Fk

This is a hard discrete optimization problem
Since 2006, there has been heuristic algorithms based on
lattice reduction.
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Sollya: Functions and domains

> f = exp(x); /* Define the function */
> dom = [ -1/4;1/4]; /* Define the domain */
> f; /* Display f */
exp(x)
> diff(f); /* Differentiate f */
exp(x)
> f(x + 2) /* Compose f with x + 2 */
exp(2 + x)
> dom; /* Display the domain */
[ -0.25;0.25]
> inf(dom); /* Lower bound of the domain */
-0.25
> sup(dom); /* Upper bound of the domain */
0.25
> plot(f, dom); /* Plot the function */
>
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Sollya: The remez command

> f = exp(x); /* Define the function */
> dom = [ -1/4;1/4]; /* Define the domain */
> n = 5; /* Set degree n to 5 */
> p = remez(f, n , dom); /* Remez polynomial */
> p;
1.00000001061667289247812...
>
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Sollya: Looking at the error

> f = exp(x); /* Define the function */
> dom = [ -1/4;1/4]; /* Define the domain */
> n = 5; /* Set degree n to 5 */
> p = remez(f, n , dom); /* Remez polynomial */
> err = p/f - 1; /* Define the rel. error */
> plot(err , dom); /* Plot the error */
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Sollya: Optimizing for absolute or relative error

> f = log(1 + x); /* Define the function */
> dom = [ -1/4;1/4]; /* Define the domain */
> n = 5; /* Set degree n to 5 */
> p = remez(f, n , dom); /* Remez polynomial */
> err = p/f - 1; /* Define the rel. error */
> plot(err , dom); /* Plot the error */

> /* Recompute Remez polynomial for rel. error */
> p = remez(1, [| 1,...,n |], dom , 1/f);

> err = p/f - 1; /* Define the rel. error */
> plot(err , dom); /* Plot the error */
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Sollya: Computing and bounding the maximum error

> f = exp(x); /* Define the function */
> dom = [ -1/4;1/4]; /* Define the domain */
> n = 5; /* Set degree n to 5 */
> p = remez(1, n , dom , 1/f); /* Remez polynomial */
> err = p/f - 1; /* Define the rel. error */

> /* Compute supremum norm to get max. error */
> errmax = supnorm(p, f, dom , relative , 2^( -10));

> errmax;
[1.0576...e-8; 1.0586...e-8]

> superrmax = sup(errmax);
> log2(superrmax);
-2.649...e1
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Sollya: The fpminimax command

> f = exp(x); /* Define the function */
> dom = [ -1/4;1/4]; /* Define the domain */
> n = 5; /* Set degree n to 5 */

> /* fpminimax with double prec. coeffs. */
> p = fpminimax(f, n, [|D...|], dom);

> err = p/f - 1; /* Define the rel. error */
> errmax = supnorm(p, f, dom , relative , 2^( -10));
> superrmax = sup(errmax);
> log2(superrmax);
-2.649...e1

> display = hexadecimal;
Display mode is hexadecimal numbers.
> for i from 0 to degree(p) do coeff(p,i);
0x1 .0000002 c62a0cp0
0xf.fffff4495ce78p -4
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Sollya: Computing the optimal degree

> f = exp(x); /* Define the function */
> dom = [ -1/4;1/4]; /* Define the domain */
> targeterr = 2^ -20; /* Define target error */
> nmax = 18; /* Set max. degree */

> n = 1;
> okay = false;
> while (!okay && (n <= nmax)) do {

p = fpminimax(f, n, [|D...|], dom);
errmax = sup(supnorm(p, f, dom , relative ,

2^( -10)));
if (errmax <= targeterr) then okay = true;
n = n + 1;

};

> okay;
true;
> degree(p);
4
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Advertisement: Sollya vs. Maple

Both Maple and Sollya. . .

implement the Remez algorithm
have a plot command
support some means to estimate the supremum norm
‖p/f − 1‖∞

But Maple. . .

has trouble, in Remez, with relative errors and functions that
vanish,
implements the plot command with HW FP arithmetic.
As the error is often less than 2−53, the plot shows nonsense.
Finally, Maple always underestimates the supremum norm.

 Use Sollya!
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Outline

5 Gappa and error bounds
Gappa’s overview
Gappa’s inner workings
Debugging proofs
Proof hints
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Gappa

Objective: help users verify/analyze their numerical applications.

Design decisions:

The tool verifies enclosures of mathematical expressions.

These expressions can contain rounding operators
to express limitations and properties of datatypes.

Formal proofs are generated to provide confidence
in the results.

How does it work?

Interval arithmetic for propagating enclosures.

Theorems about rounded values and round-off errors.

Rewriting rules for tightening computed enclosures.
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Bounding Expressions by Numeric Intervals

Basic element: an enclosure e ∈ I .

e is an expression on real numbers:
e ::= number | − e | ◦(e) | e + e | e × e |

√
e | . . .

I = [a, b] is an interval with dyadic rational bounds: m × 2n.

These enclosures are appropriate to express questions
that usually arise when verifying numerical applications:

no overflow, no invalid operations, etc

variable domain: x̃ ∈ I ,

accuracy of computed values

absolute error: x̃ − x ∈ I ,
relative error: (x̃ − x)/x ∈ I .
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Rounding Operators

Example (Floating-point arithmetic)

float<53,-1074,ne>(x) is a number

writable with 53 bits,

multiple of 2−1074,

closest to x when rounding to nearest,
with tie break to even mantissas.

In other words, it is the default binary64 rounding of x .
It can also be written float<ieee 64,ne>(x).

Example (Fixed-point arithmetic)

fixed<-16,dn>(x) is a number

multiple of 2−16,

closest to x when rounding toward −∞.

In other words, it is 2−16 · bx · 216c.
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Syntax

# 1. Macros for expressions and rounding operators
one = 1;
one_third = float <ieee_32 ,ne >(1 / 3);
@D = float <ieee_64 ,ne >;
y = D(1 + D(x * one_third));
y_too D= one + x * one_third;

# 2. Logical formula to prove
{

x in [1,2]
->

one + 1 in [2,2] /\
y - (1 + x * (1 / 3)) in ? # question mode

}

# 3. Hints for Gappa

$ gappa test.g
Warning: y is being renamed to y_too at line 6 column 29

Results for x in [1, 2]:
one + one in [1b1 {2, 2^(1)}, 1b1 {2, 2^(1)}]
y_too - (one + x * (one / 3)) in [384307162470066815b-85 {9.93411e-09,

2^( -26.585)}, 11453246219b-59 {1.98682e-08, 2^( -25.585) }]
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Gappa Script for Exponential

@rnd = float <ieee_64 ,ne >;

TWO_4_RCP_LN_2 = rnd (2.308312065422341419207441504113376140594482421875 e1);
TWO_M_4_LN_2 = rnd (4.33216987849965803891727489371987758204340934753418e-2);

c0 = rnd (1.00000000000000444089209850062616169452667236328125);
c1 = rnd (0.99999999999998134825318629737012088298797607421875);
c2 = rnd (0.499999999828379615429696514183888211846351623535156);
c3 = rnd (0.166666666806587454585653063077188562601804733276367);
c4 = rnd (4.1667643527348190157777452213849755935370922088623e-2);
c5 = rnd (8.3331924949543046549083058494034048635512590408325e-3);

x = rnd(x_); # the input
n = int <ne >(rnd(x * TWO_4_RCP_LN_2));
r rnd= x - n * TWO_M_4_LN_2; # the reduced argument
Mr = x - n * Mln2div16;

p rnd= c0 + r * (c1 + r * (c2 + r * (c3 + r * (c4 + r * c5))));
Mp = c0 + Mr * (c1 + Mr * (c2 + Mr * (c3 + Mr * (c4 + Mr * c5))));

y rnd= tbl * p; # the value computed by the implementation
My = Mtbl * Mp;

{
# all the hypotheses , including bounds by Sollya
|x| <= 800 /\
|TWO_M_4_LN_2 -/ Mln2div16| <= 1b-53 /\
|tbl -/ Mtbl| <= 34497432307204232637036148220926061792329570434285b-218 /\
Mtbl in [1,2] /\
|Mp -/ f| <= 3056780333711934143700435b-129

->
# what is the relative global error?
y -/ Mtbl * f in ?

}
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Dependent Expressions and Interval Evaluation

Example

Compute the range of ũ·ṽ−u·v
u·v knowing that:

domains of u, v , ũ, and ṽ are [1, 100];

values are related:
∣∣ ũ−u

u

∣∣ ≤ 0.1 and
∣∣ ṽ−v

v

∣∣ ≤ 0.2.

Interval evaluation:

ũ · ṽ − u · v
u · v

∈ [1, 100]× [1, 100]− [1, 100]× [1, 100]

[1, 100]× [1, 100]

∈ [1, 10000]− [1, 10000]

[1, 10000]

∈ [−9999, 9999] Bad!

Naive interval arithmetic does not track dependencies between values.
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Rewriting Expressions to Exhibit Dependencies

Example

Compute the range of ũ·ṽ−u·v
u·v knowing that

values are related:
∣∣ ũ−u

u

∣∣ ≤ 0.1 and
∣∣ ṽ−v

v

∣∣ ≤ 0.2.

Solution: make dependencies explicit.

ũ · ṽ − u · v
u · v

=
ũ − u

u
+

ṽ − v

v
+

ũ − u

u
× ṽ − v

v

Interval evaluation:

ũ · ṽ − u · v
u · v

∈ [−0.1, 0.1] + [−0.2, 0.2] + [−0.1, 0.1]× [−0.2, 0.2]

∈ [−0.32, 0.32]

Gappa automatically rewrites expressions in order to get tight
enclosures when computing error bounds.
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ũ − u

u
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Gappa’s Inner Workings

1 Massage the user goal into a simple logical formula:

e1 ∈ I1 ∧ · · · ∧ en ∈ In =⇒ en+1 ∈ In+1.

2 Guess expressions and instances of theorems potentially useful
as intermediate steps for bounding e1, · · · , en+1.

3 Assuming that e1 ∈ I1, · · · , en ∈ In hold,
perform a saturation on the selected theorems
until the enclosure en+1 ∈ In+1 is proved.

(Keep track of the theorems as they are applied.)

4 Generate a formal proof.
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Expression Properties

Gappa handles more than just enclosures:

BND(x , I ) ≡ x ∈ I x in I

ABS(x , I ) ≡ |x | ∈ I
REL(x , y , I ) ≡ ∃ε ∈ I , x = y · (1 + ε) x -/ y in I

FIX(x , e) ≡ ∃m ∈ Z, x = m · 2e @FIX(x,e)

FLT(x , p) ≡ ∃m, e ∈ Z, x = m · 2e ∧ |m| < 2p @FLT(x,p)

NZR(x) ≡ x 6= 0
EQL(x , y) ≡ x = y x = y

Variants: x <= c, x >= c, |x| <= c, |x -/ y| <= c.

Question mode: replace “in I” by “in ?”.
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What Could Possibly Go Wrong?

Example (Wrong)

The relative round-off error is bounded:

{ float <ieee_64 ,ne >(x) -/ x in ? }

Example (Correct)

But only outside the subnormal range:

{ |x| in [1e-6,1e6] ->
|float <ieee_64 ,ne >(x) -/ x| <= 1b-53 }
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What Could Possibly Go Wrong?

Example (Wrong)

The relative round-off error of the FP addition is bounded:

{ float <ieee_64 ,ne >(x + y) -/ (x + y) in ? }

Example (Correct)

But only if the inputs are floating-point numbers:

@rnd = float <ieee_64 ,ne >;
x = rnd(x_); y = rnd(y_);
{ |rnd(x + y) -/ (x + y)| <= 1b-53 }

Example (Minimal)

Actually, that is how Gappa does the proof:

@rnd = float <53,-1074,ne >;
{ @FIX(z, -1074) -> |rnd(z) -/ z| <= 1b-53 }
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What Could Possibly Go Wrong?

Example (Too difficult)

{ int <dn >(x + y) - (y + x) in ? }

Example (Too easy)

Gappa is guided by the syntax and structure of expressions:

{ int <dn >(x + y) - (x + y) in [-1,0] }
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What Could Possibly Go Wrong?

Example (Dependencies)

{ x in [0,1] -> x * (1 - x) in ? } # [0,1]

Example (Sub-intervals)

{ x in [0,1] -> x * (1 - x) in ? } # [0 ,0.375]
$ x; # $ x in 4;
# x in [0 ,0.25] [0.25 ,0.5] [0.5 ,0.75] [0.75 ,1]

Example (Rewriting)

{ x in [0,1] -> x * (1 - x) in [0 ,0.25] }
x * (1 - x) -> 1/4 - (x - 1/2) * (x - 1/2);
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What Could Possibly Go Wrong?

Example (Exponential)

Why does the script for exponential fail?

{ |x| <= 800 /\
|TWO_M_4_LN_2 -/ Mln2div16| <= 1b-53 /\

->
r in ? /\ # |r| <= 2^(10.6)
p in ? } # |p| <= 2^(46.3)

Due to overestimation, p possibly crosses zero;
the relative error between p and p̂ is thus meaningless!

Example (Sub-intervals)

$ x;

gives |r | ≤ 28.6 and |p| ≤ 236.3. So there are dependencies!
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Fixing the Proof of Exponential

Example (Argument reduction)

n = b◦(x · TWO 4 RCP LN 2)e.
r̂ = x − n · ĉ with ĉ = ln 2/16.
Note: x appears twice in r̂ , hence the overestimation.

Reducing dependencies:

r̂ = x − x · TWO 4 RCP LN 2 · ĉ − (n − x · TWO 4 RCP LN 2) · ĉ
= x · (1− TWO 4 RCP LN 2 · ĉ)− (n − x · TWO 4 RCP LN 2) · ĉ

Example (Rewriting hint for Gappa)

# any property on the lhs can be obtained from the rhs
x - n * Mln2div16 -> x * (1 - TWO_4_RCP_LN_2 *

Mln2div16) - (n - x * TWO_4_RCP_LN_2) * Mln2div16;
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Proof Hints

Prove by splitting the range of x

into 4 parts: $ x;

into 10 parts: $ x in 10;

at points 1, 10, 11: $ x in (1,10,11);

Prove a property on y by bisecting the interval of x : y $ x;

Compute and use the error between y and x : y ~ x;

Use y when looking for properties of x

always: x -> y;

only when a constraint is met: x -> y {z >= 3};
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Outline

6 Supremum norm
Verified supremum norms
Previous approaches for supremum norms
Sollya’s supremum norm approach
Supremum norm algorithm
Supremum norms on polynomials
Taylor Models
Use of the supremum norm algorithm in Sollya

Christoph Lauter, Guillaume Melquiond Designing a Correct Numerical Algorithm



Intro Implem Errors Sollya Gappa Norm Conc Supnorms Previously Now Algo Poly Taylor Usage

Verified supremum norms

Let f be a function given by an expression,
p a polynomial,
[a, b] an interval.

Let η > 0 be a quality parameter.
Let mode ∈ {absolute, relative} (ε defined accordingly).

Find ` and u such that{
‖ε‖∞ ∈ [`, u]

(u − `)/` ≤ η.

These properties must be rigorously fulfilled.

Particular difficulty: removable discontinuities
e.g., when f (x) = sin(x) and p(x) = x q(x).

The algorithm should be able to generate a formal certificate.
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State of the art

It is a univariate global optimization problem.

Purely numerical algorithms: find the zeros of ε′

(e.g., Newton’s algorithm).

 Not rigorous: we might miss some of the zeros.

General-purpose rigorous global optimization algorithm:
(Hansen 1992), (Kearfott 1996), (Messine 1997).

Principle: branch and bound. Maintain ` such that ` ≤ ‖ε‖∞.

Reduce the width:
 bisection, Interval Newton’s algorithm, Hansen’s algorithm.

Eliminate sub-intervals:
 If ε(I ) ⊆ [−`, `], eliminate I .

 If ε′(I ) 63 0 eliminate I .

Increase `:
 If ε(I ) = [α, β] with α ≥ `, set `← α.

 Idem if β ≤ −`.
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 If ε′(I ) 63 0 eliminate I .

Increase `:
 If ε(I ) = [α, β] with α ≥ `, set `← α.

 Idem if β ≤ −`.
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Dependency phenomenon

GO algorithms relies on the fact that ε(I ), ε′(I ), etc. give
relevant information.

In our case this assumption is not fulfilled due to the
dependency phenomenon.

Example: I = [0, 1], f = exp(x), deg(p) = 13, ‖p − f ‖∞ ≤ 2e−19.

Let h� 1. On J = [u, u + h]:
ε(J) computed through p(J)− f (J).

Since h� 1,
f (J) ' [f (u), f (u) +O(h)].

First case: h� ‖ε‖∞
Second case: h� ‖ε‖∞
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Dependency phenomenon (2)

This phenomenon appears at several orders:

‖ε‖∞ = 1.4e−19,

‖ε′‖∞ = 5.6e−17,

‖ε′′‖∞ = 7.3e−15,∥∥ε(3)∥∥∞ = 5.6e−13,∥∥ε(4)∥∥∞ = 3.0e−11,∥∥ε(5)∥∥∞ = 1.2e−9,∥∥ε(6)∥∥∞ = 3.8e−8.

In conclusion: general-purpose techniques of GO useless.
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Ad-hoc techniques

Use an intermediate polynomial T ' f .

The dependency in p − f becomes a cancellation in the
coefficients of p − T .

Idea used by (Krämer 1996), (Harrison 1997): functions
manually handled, one by one.

Makino and Berz: use Taylor Models for computing T . More
systematic, but does not guarantee the final quality of [`, u].

None of these techniques correctly handle the removable
discontinuities.
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Our approach

Automatic: no parameter requires to be manually adjusted.

Accept any function f defined by an expression.

Guaranteed a priori quality η of the result.

Correctly handles the removable discontinuities in usual cases.

Could generate a complete formal proof without much effort.
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How a numerical algorithm gives a rigorous bound

Numerical algorithms give relevant information:
1 They are often very reliable.

2 They give a rigorous lower bound `.

Algorithm:

Numerically find the zeros of ε′: L = [z1, . . . , zk ];
for i ← 1 to k
— [ai , bi ]← |ε([zi , zi ])|;
end
`← max |ai |;
return `;

It is very easy to increase the accuracy of `.

The actual difficulty is in finding a rigorous upper bound
 (in other words:) prove the actual accuracy of `.
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Estimation of the accuracy of `

Accuracy of ` easy to estimate (reliably but not rigorously).

Let z be an approximate zero, and z? ' z the exact zero.
Thus:

ε(z) = ε(z?) + (z − z?) ε′(z?) +
(z − z?)2

2
ε′′(ξ), where ξ ' z .

This leads to the following estimation:

` ' ‖ε‖∞ +
(z − z?)2

2
ε′′(z).

Algorithm computeLowerBound(ε, I , η) returns ` such that ` ≤ ‖ε‖∞ rigorously,∣∣∣‖ε‖∞−``

∣∣∣ ≤ η with a high level of confidence.
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Our algorithm, absolute error case

Assumption: procedure findPolyWithGivenError(f , I , δ)
computing a polynomial T (with a sufficient degree) such
that ‖T − f ‖∞ ≤ δ.

Our algorithm:

`← computeLowerBound(p − f , I , η/32);

m′ ← ` (1 + η/2); u ← ` (1 + 31η/32); δ ← 15` η/32;

T ← findPolyWithGivenError(f , I , δ);

s1 ← m′ − (p − T ); s2 ← m′ − (T − p);

if showPositivity(s1, I ) ∧ showPositivity(s2, I )

then return (`, u);

else return ⊥;

Christoph Lauter, Guillaume Melquiond Designing a Correct Numerical Algorithm



Intro Implem Errors Sollya Gappa Norm Conc Supnorms Previously Now Algo Poly Taylor Usage

Our algorithm, absolute error case

Assumption: procedure findPolyWithGivenError(f , I , δ)
computing a polynomial T (with a sufficient degree) such
that ‖T − f ‖∞ ≤ δ.

Our algorithm:

`← computeLowerBound(p − f , I , η/32);

m′ ← ` (1 + η/2); u ← ` (1 + 31η/32); δ ← 15` η/32;

T ← findPolyWithGivenError(f , I , δ);

s1 ← m′ − (p − T ); s2 ← m′ − (T − p);

if showPositivity(s1, I ) ∧ showPositivity(s2, I )

then return (`, u);

else return ⊥;

Christoph Lauter, Guillaume Melquiond Designing a Correct Numerical Algorithm



Intro Implem Errors Sollya Gappa Norm Conc Supnorms Previously Now Algo Poly Taylor Usage

Absolute error case, proof

Let `← computeLowerBound(p − f , I , η′).
Hence (most likely)

‖p − f ‖∞ ≤ ` (1 + η′).

Problem: how can we prove it?

Idea: proving polynomial inequalities is easier.

Let T ← findPolyWithGivenError(f , I , δ).
By triangle inequality

‖p − T‖∞ ≤ ` (1 + η′) + δ. (1)

This inequality can be formally checked.

 Using Equation (1), we get the rigorous bound:

‖p − f ‖∞ ≤ ‖p − T‖∞ + ‖T − f ‖∞
≤ ` (1 + η′) + 2δ.
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Our algorithm: absolute error case

`← computeLowerBound(p − f , I , η/32);

m′ ← ` (1 + η/2); u ← ` (1 + 31η/32); δ ← 15` η/32;

T ← findPolyWithGivenError(f , I , δ);

s1 ← m′ − (p − T ); s2 ← m′ − (T − p);

if showPositivity(s1, I ) ∧ showPositivity(s2, I )

then return (`, u);

else return ⊥;
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Cases of failure of the algorithm

The algorithm may fail:

One does not achieve to find T such that ‖f − T‖∞ ≤ δ.

The estimated accuracy of ` was wrong.

Important point: the algorithm never lies.

Failure cases were never encountered in practice.

Possible solutions in case of failure:

Cut the interval into sub-intervals.

Call computeLowerBound with a smaller parameter
(e.g. η/1024).
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Proving the supremum norm of a polynomial

Absolute error: ‖p − T‖∞ ≤ m′ if and only if

∀x ∈ I ,

{
m′ − p(x) + T (x) ≥ 0
m′ + p(x)− T (x) ≥ 0.

Relative error: ‖p/T − 1‖∞ ≤ m′ if and only if

∀x ∈ I ,

{
m′ |T (x)| − p(x) + T (x) ≥ 0
m′ |T (x)|+ p(x)− T (x) ≥ 0.

Moreover the core of the algorithm proves that

∀x ∈ I ,

(
|f (x)| ≥ F and |f (x)− T (x)| ≤ δ ≤ F

)
.

Hence, T has a constant sign over I .

In any case, proving the supremum norm of a polynomial is
equivalent to proving polynomial inequalities.
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Proving a polynomial inequality

In order to prove that ∀x ∈ [a, b], q(x) > 0 where q is a
polynomial:

(Recursively) study the variations of q.

Rigorously count the real roots of q inside [a, b]:
 Descartes rule of signs, Sturm sequence, etc.

Sum-of-squares technique: rewrite q as

q(x) =
k∑

i=1

(x − a)αi (b − x)βi si (x)2,

where the si are polynomials.

Found by an efficient, possibly heuristic, algorithm.

Once found: there just remains a polynomial equality to prove.

Particularly interesting for a formal proof.
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Computing a rigorous polynomial approximation

Goal: implement findPolyWithGivenError(f , I , δ).
 returning a polynomial T such that ‖T − f ‖∞ ≤ δ.

In practice: write a procedure findPoly(f , I , n)
 returning (T , ∆) with deg(T ) = n and ‖T − f ‖∞ ≤ ∆.

findPolyWithGivenError obtained from findPoly by a
simple bisection over n.

This strategy may not terminate
 case of failure of the algorithm.
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Taylor Models

Popular implementation of findPoly(f , I , n): Taylor Models.

Taylor Model of degree n of f over I : (T , ∆) such that

1 T is an approximate Taylor polynomial of f .

2 ∀x ∈ I , f (x)− T (x) ∈ ∆.

A Taylor Model representing any function f given by an
expression can be computed by means of composition rules.

Problem: the information about the zeros is lost.

 
(x − x2

2 , [−7e−3, 7e−3])

(x + x2

2 , [−3e−3, 3e−3])
leads to an infinite remainder. . .

. . . though it represents sin(x)/(exp(x)− 1) (perfectly
defined by continuity).
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Modified Taylor Models

Develop f at one of its zeros z :

f (x) = 0 + a1 (x − z) + · · ·+ an (x − z)n +O(x − z)n+1.

 the information f (z) = 0 is readable in the development.

Idea: represent the coefficients of T with small intervals
enclosing the actual value.
 If some coefficient is [0, 0], it must be exactly 0.

Moreover, keep (x − z)n+1 factored out in the remainder.

Modified Taylor Models

A modified Taylor Model of f over I , developed at x0 is (T , ∆)
where:

1 T has (narrow) interval coefficients.

2 ∀x ∈ I , ∃δ ∈ ∆, f (x)− T (x − x0) = (x − x0)n δ
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Sollya: Computing and bounding the maximum error

> f = exp(x); /* Define the function */
> dom = [ -1/4;1/4]; /* Define the domain */
> n = 5; /* Set degree n to 5 */
> p = remez(1, n , dom , 1/f); /* Remez polynomial */
> err = p/f - 1; /* Define the rel. error */

> /* Compute supremum norm to get max. error */
> errmax = supnorm(p, f, dom , relative , 2^( -10));

> errmax;
[1.0576...e-8; 1.0586...e-8]

> superrmax = sup(errmax);
> log2(superrmax);
-2.649...e1
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What We Showed Today

How to implement a mathematical function

that is efficient and rather accurate,

with an argument reduction and a polynomial approximation
found by Sollya,

with global error bounds verified by Gappa.
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What We Did Not Show Today
For lack of time

How to implement a mathematical function

that achieves correct rounding (cf table-maker dilemma),

that uses floating-point expansions,

that is based on converging algorithms (e.g. Newton),

that is guaranteed not to have unsafe executions
(e.g. arithmetic overflow, out-of-bound array access),

that is formally proved to be correct.
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What We Could Not Have Shown Today
Even if we had wanted to

How to implement a mathematical function

for an arbitrary accuracy,

with a bound on the average error.

Christoph Lauter, Guillaume Melquiond Designing a Correct Numerical Algorithm



Intro Implem Errors Sollya Gappa Norm Conc Conclusion Perspectives Refs

What We Could Not Have Shown Today
Even if we had wanted to

How to implement a mathematical function

for an arbitrary accuracy,

with a bound on the average error.

Christoph Lauter, Guillaume Melquiond Designing a Correct Numerical Algorithm



Intro Implem Errors Sollya Gappa Norm Conc Conclusion Perspectives Refs

What the Future Holds

Automated generators of verified implementations.

Function implementpoly in Sollya.
Project Metalibm.

Floating-point functions verified directly on their C code.
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Annotated Newton Algorithm for Square Root

/*@ requires 0.5 <= x <= 2;
@ ensures \abs(\ result - 1/\ sqrt(x)) <= 0x1p -6 * \abs (1/\ sqrt(x)); */

double sqrt_init(double x);

/*@ lemma quadratic_newton: \forall real x, t; x > 0 ==>
\let err = (t - 1 / \sqrt(x)) / (1 / \sqrt(x));
(0.5 * t * (3 - t * t * x) - 1 / \sqrt(x)) / (1 / \sqrt(x)) ==

- (1.5 + 0.5 * err) * (err * err); */

/*@ requires 0.5 <= x <= 2;
@ ensures \abs(\ result - \sqrt(x)) <= 0x1p -43 * \abs(\sqrt(x)); */

double sqrt(double x)
{

int i;
double t, u;
t = sqrt_init(x);

/*@ loop pragma UNROLL 4;
@ loop invariant 0 <= i <= 3; */

for (i = 0; i <= 2; ++i) {
u = 0.5 * t * (3 - t * t * x);
//@ assert \abs(u - 0.5 * t * (3 - t * t * x)) <= 1;
/*@ assert \let err = (t - 1 / \sqrt(x)) / (1 / \sqrt(x));

(0.5 * t * (3 - t * t * x) - 1 / \sqrt(x)) / (1 / \sqrt(x)) ==
- (1.5 + 0.5 * err) * (err * err); */

//@ assert \abs(u - 1 / \sqrt(x)) <= 0x1p -10 * \abs(1 / \sqrt(x));
t = u;

}

//@ assert x * (1 / \sqrt(x)) == \sqrt(x);
return x * t;

}
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